TENTH ANNUAL REPORT

OF THE

BOARD OF HEALTH

OF THE

STATE OF NEW JERSEY,

AND REPORT OF THE

BUREAU OF VITAL STATISTICS.

1886.

TRENTON, N. J.:
THE JOHN L. MURPHY PUBLISHING CO.
1887.
THE STATE BOARD OF HEALTH.

Hon. Henry C. Kelsey, Secretary of State,
Hon. John P. Stockton, Attorney-General,
George H. Cook, State Geologist,

Members ex officio.

Laban Dennis, M.D. ... Newark.
Prof. Cyrus F. Brackett, M.D., LL.D. Princeton.
Franklin Gaunt, M.D .. Burlington.
Prof. A. R. Leeds, Ph.D. .. Hoboken.
Ezra M. Hunt, M.D. ... Trenton.
E. A. Osborn, C.E.. Middletown.
Edward R. O'Reilly, M.D. ... Elizabeth.

President ... C. F. Brackett.
Secretary ... E. M. Hunt.
Recording Clerk ... E. A. Osborn.
REPORT OF THE SECRETARY OF THE BOARD.

To His Excellency Leon Abbott:

Governor—I have the honor, on behalf of the State Board of Health, to present to your Excellency and through you to the Legislature of the State, this its tenth report.

During the decade which has now nearly passed since this Board was established, the progress of sanitary science and art has been among the most important and notable achievements of the age.

The practitioners of the healing art have not only recognized it as essential to their calling, but have interwoven many of its principles not less with the treatment of disease than with its prevention.

Its outlook is even in advance of this, so that Prof. Robert Koch, in his recent opening address before the University of Berlin, said: "Hitherto, gentlemen, you have been taught how to endeavor to cure disease; henceforth you will be taught how to succeed in preventing disease." While this does not mean that disease will ever cease from the earth, it does mean that the causes of very many diseases are within the range and the duty of our control. It does mean that the occasional infection need not become epidemic, and that the fatality of individual cases can be greatly diminished.

This interest has not been confined to any one calling. We no longer need point to Kingsly and Farrar among the clergy, to Lord Derby and Disraeli among statesmen, to Rawlinson and Denton among engineers, to Angus Smith and Frankland among chemists, to Quetlet and Farr among statisticians, as those who in their respective callings could be singled out for their perception of the necessity of a consideration of this subject.

Every science, every art and almost every calling have come to express their interest and to contribute from their stores to its essential progress.

It is no longer patronized as a philanthropy, but pursued as a political economy. Labor has no more earnest plea for its defense
and life, no more inalienable right for its preservation. However
deficient the practice of the art of prevention may be, the sentiment
of society responds to the recent declaration of a distinguished civil-
ian: "In the world there is no value but human life, and human life
has the greatest value when healthy and moral." To the apprecia-
tion, conservation and preservation of this life, patriotism and citizen-
ship may well turn their energies.

At the September meeting of the Sanitary Congress of Great Britain,
Sir Spencer Wells spoke thus of the national and economic view of
sanitary progress:

"When we speak of the prolongation of life, we think chiefly of
the advantage to individuals, their better health and their augmented
power of enjoyment. This is a great deal. But it means more for
the State. It may sound well to declaim against the money view of
the subject as low and sordid, but it is not to be overlooked when we
are apportioning merit for work done. A donation to the community
of two or three millions would be looked upon as an extravagance.
But what is the fact? During the forty-nine years that registra-
tion has been in force, and sanitary reforms have advanced with its annually
increased information, about eight millions of people have been added
to the population of the United Kingdom. We may fairly credit our
reforms with a large proportion of this increase in numbers, and con-
sequently of their money value. The result on human happiness is
not a matter of calculation, but a future industrial census will show
in a very definite shape the effect of sanitation in raising the economic
value of the population. We cannot be far wrong if we put the
average duration of human life in Great Britain half a century ago
at about thirty years; now, according to the healthy life-table, it is
forty-nine years. The population, in less than fifty years, increased,
as I have said, by some eight millions. Each individual of these
millions was worth to the State, as is calculated, about £150. Say
that only two millions out of the eight millions of increased numbers
were the fruit of sanitary and medical work, their economical value
was at least £300,000,000, and that a clear gain. To this we must
add that the productive powers of the population depend on labor,
and that labor depends upon health. Let sickness come, men are
disabled, their labor ceases, and the produce of labor is lost. Formerly
it was calculated that a twenty-third part of the population was
constantly sick, and the products of all that labor for the time necessarily
withdrawn. A great deal of this sickness has been altogether pre-
vented, and the duration of that which comes in spite of sanitation is
lessened. Happily did Richardson give form and expression to the
proverb, 'National health is national wealth!' and well may Froude
follow with his paraphrase, 'The Commonwealth is the common health,'
to bad air or to the necessity of using foul water; and yet have maintained a good degree of health. The careless observer makes a hasty generalization and concludes that after all filth is not so bad as some think, and that the relations between sickness and foul air, foul water and foul food is partly imaginary. It is no doubt true that the resistive power of some persons is far greater than that of others, and that a degree of toleration is often established which renders some persons comparatively unsusceptible after acclimation. But the careful observer or inquirer does not fail to remember that such an argument is inconclusive unless it is shown that the exposure or occupation has also agreed with the great majority of those who have engaged in it, and that the life history of at least a thousand persons must be followed out if we would know the actual law of results. The natural vigor of the person, the modes of inurement, the habit of adjustment to the work, the length of working years, the effect upon offspring and various other items must be thought of, in making up the decision as to the general effects. There can be found outlers, potters, operatives in cotton and wool who have lived to be old, but this does not prove the sanitary value or harmlessness of the dust arising from these industries. Often the men themselves will tell you that they suffer no serious harm. But whenever systematic investigation has been made the life and sickness tables have in the aggregate told the serious results.

"Only very strong, or more accurately unsusceptible, persons could engage in such avocations with impunity, and having been habitually exposed to the effluvia for some time, they would naturally become, as it were, inured to the contact with filth. It is therefore not in the least degree surprising to be told that some sewermen even show marvelous health and activity. The strangeness of the story would come out if the facts lay the other way. Let no mistake, however, be made as to the moral. Arsenic is not the less an active poison, working death with certainty, because there are arsenic eaters who thrive and grow fat on what kills men not habituated to its use. If the whole population lived in the sewers, the mortality would be considerable, because the weakly and susceptible would be killed off with great celerity, but the survivors would be extremely unlikely to suffer from either typhoid fever or diphtheria."

The experienced and fully-informed mind reflects that observations may not have been sufficiently extensive or not sufficiently extended as to time; that as vital questions involve many factors some may have been overlooked or not duly considered; that an important element may be recognizable by consequences that appear at a remote date; that the results of evil practices may be found nearer the end of life, or that children born of those living in such unfortunate circumstances hence inherit a feebler organization and low vitality. All statistics and classified observations confirm what nature seems to teach, that mankind is best off with pure air, pure water, good food and cleanly surroundings. The notice taken of the exceptions shows that the unexpected or the unnatural has happened and comparisons of these confirm the rule.

SEWAGE DISPOSAL.

For the year past no subject has more earnestly engaged the attention of our cities and larger towns than that of the disposal of sewage. For a long time many of the citizens of Trenton have felt the need of an enlarged and consistent system by which its rapidly-growing population could be afforded facilities for the removal of all fouled liquids. Here and there short sewers are to be found, but most of the householders have been compelled to depend upon cesspools. Every year since the securing of an abundant and excellent water-supply has but increased the demand for some better method of riddance than that of soil-soakage and that occasional emptying of cesspools which approaching overflow forces. The city has had a well-devised plan furnished by Rudolph Hering, and, with tardy endeavor and some complications, is endeavoring to enter upon a systematic plan for the construction of a main sewer, which will prepare the way for a complete sewerage of the entire city. It is always to be remembered that sewers, by the line of opening they make through the streets, as well as by the amount of liquids they remove, do much to dry the soil, and so are of great advantage for drainage as well as for sewerage.

Atlantic City has extended its sewer system through all its principal streets. The sewage is brought to a central point, from which it is daily pumped, while fresh, to what are called filtering beds on a meadow just in the rear of the city. Too much cannot be said in praise of the energy with which a few of the citizens have pushed forward the enterprise and have thus rid this growing center of the cart and cesspool nuisance, which once threatened its health and its fair fame. We trust and believe that the same spirit of enterprise
will not permit the miserable apologies for filter beds which were started in the rear of the town to remain in their present locality, or indeed anywhere, to be passed off as filtering or precipitating works in any modern sense of the terms. We are glad to know that the city has it in its power to control the locality of the final filtering and precipitating tanks. We also insist that the most careful expert oversight shall be exercised over the works, both as to the mode of precipitation and the effluent. Having introduced an excellent water-supply and having made a liberal outlay for a sewer system which can be made very efficient, it only remains that by constant vigilance there shall be secured to the thousands that tarry both summer and winter at this resort the healthful attractions of which the city and the State are so proud. A list should be furnished each year of those who avail themselves of the water-supply and of the sewage removal, so that strangers and citizens may avoid the localities which still insist upon cesspools and middens and furnish drinking-water from surface wells in the soil.

The city of Orange, under the direction of Messrs. Bassett and Hering, is executing a most important sewage system. The method of removal and precipitation adopted is in accord with the advanced views that now obtain as to the feasibility of clarifying the sewage so as to furnish an effluent which may go into the streams. The works will be found worthy of a visit by all who are interested in the newer methods of sewage disposal.

Long Branch City, after many tribulations, has at last entered upon a well-devised system of sanitary improvement. We have carefully examined the works during the process of construction, and can claim for them many great advantages. If the methods of precipitation and discharge provided for are thoroughly carried out we shall not be disappointed in results.

In Newark the system of sewerage which was acted upon last year is being carried forward.

There are several others of our cities and towns which are giving attention to this subject. It is believed that most of them are recognizing the importance of arrangements for preserving the soil and the air from pollution, and of delivering the soil from that additional amount of water, which is always so greatly increased where there is a public water-supply unless there is provision for the removal of all sewage liquids entirely away from the ground and soil of the cities.
that most sewage has no practical value. It involves the entrance upon farming on a large scale on the part of corporatios. The dilution of the sewage is such that it is not easily added to the soil with much fertilizing effect. While we believe it to be the most expensive method of dealing with town sewage, yet, where it has been accurately carried out, it has been effective. We believe it must be admitted that if all details are fully observed, and if the very best farmers and gardeners are employed, it furnishes a purer effluent than any other method. The soil is not to be lost sight of as a wonderful disposer of organic matter and of water. In many a single house or small village it is practicable by means of systematized application of suds, kitchen-washings and vault-material upon the ground, away from wells and in trenches between rows of rapidly-growing vegetation to dispose of household refuse.

While irrigation and intermittent filtration are allied, it is easy to see that the latter may succeed where the former would fail. The latter gives better advantages for aeration and for appropriation by growing crops. What is sometimes known as the sub-filtration or irrigation system, and also as the Waring system, depends upon tubes of tiles laid in well-drained ground, which are intermittently supplied with sewage. This air and sewage alternately circulate through the open tile drains, made from 8 to 12 inches deep so as to bring the plant-food within the reach of growing crops. The natural richness of much of the land of this country, the availability of compact artificial fertilizers, the freezing of the ground and heavy snows put limits upon each of these three systems in this country more than they experience in Great Britain, but upon this last the least of the three.

On the other hand, the putting of fresh sewage into streams not used for water supply is often more practicable than the same methods abroad. Our rivers are larger and more rapid in current. The careful examinations of chemists show that with our strong winds and abundance of sunshine rapid appropriation of organic material takes place.

No system has of late been coming into such prominence as that which is sometimes called the mechanical and chemical method of dealing with sewage. It depends upon the fact that by straining and then clarifying the sewage by chemical methods, the effluent or remaining water is so greatly improved in quality as to be easily disposed of in rivers.

SEWAGE DISPOSAL.

The mechanical straining at the end of a series of pipes shows that such maceration of the grosser or more solid matters has occurred as to render the undissolved portion so small as to be easily disposed of. It has long been known that some chemicals would settle or separate much of the crude matter; but the difficulties has been that the precipitate, in the form of sludge, was itself still quite bulky, and that ammonia and phosphoric acid and some organic matter still remained in the effluents. But one improvement after another has shown progress in the systems of clarification so as to provide purer effluents. Thus the Committee of the Metropolitan Board of Works (London) found that by precipitation, by the addition of 1 grain of protosulphate of iron, and 3.7 grains of lime to each gallon of sewage, followed by subsidence in settling-tanks for one or two hours, the liquid was very greatly improved. Four eminent chemists, Abel, Odling, Williams and Dupré, regarding the effluent not pure enough to admit into the river for the summer months, further subjected it to the oxidizing action of manganate of soda and of commercial oil of vitriol. This method proved so valuable that it rendered unnecessary the expensive method of filtration which had before been relied upon by means of land. There can be no doubt that precipitation is available primarily and as an aid to filtration when this is needed.

The difficulty as to the disposal of the sludge has been met by a method of reducing its bulk so as to make it transportable at a rate which will render it available in agriculture. The use of the Johnson filter press, or of the Muirhead press, as used at Maidstone, England, have much facilitated the application of this process. By this means the sludge is compressed into dry cakes, which can be disposed of easily, and in many districts help to repay in part the expense of their compression. The report of the Thames Commission, after a very careful comparison of methods, recommended the application of the mechanical and chemical method to the London sewage. A careful reviewer in the London Lancet says of it, that "precipitation and sludge filtration have given satisfactory results wherever they have been properly tried." The works at Coventry, Leyton, Salisbury, Aylesbury, etc., show the system in practical and successful operation. The report of Dr. C. M. Tidy and Prof. J. Dewar, as to Aylesbury, is full of interesting descriptions and facts. In a paper of Dr. Tidy more recently presented to the Society of Arts, London, he states the following five points as essential:
"(a) That the sewage must be treated while fresh; (b) that the sewage should be strained before chemicals are added; (c) that sufficient chemicals be added to effect complete purification; (d) that after the addition of chemicals the mixture be well stirred; and (e) that there shall be efficient tank accommodation."

There are some that insist that all this does not remove minute organisms. The answer made to this is, that it deals with sewage while harmless and valuable organisms are present, and that it removes the food on which the microphyes of disease feed. It also aids in oxidation and in other chemical transformation. Some who admit the great value of the process, claim that it is not enough alone for great quantities of sewage in large cities, but is valuable because the effluent which remains can then be passed for filtration into a much less area of land and be more thoroughly cleansed. According to the important researches of Mr. Warington upon "nitrification," much of the purifying action, which is usually termed oxidation, is due to the action of minute organisms. His experiments seem to show that these are never present over two feet below the surface, and that only soil to this depth can be relied upon for the treatment of sewage. If those views which have been accepted by others are correct, it is an additional reason why any effluent which is to be treated should be, as far as possible, cleaned of organic matter before transmissal to the deeper ground.

Sulphate of lime, alum, and the iron sulphate, are now most relied upon for this method of cleansing sewage. Great progress is being made in our knowledge of methods, and still more in such relative adjustment to localities and such skilled oversight as insures success.

In country places and single houses the cesspool is being substituted, by methods which keep the sewage within eighteen inches of the surface, or so disposes of it as that rows of grass or Indian corn or other rapidly-growing products may utilize it. There is a perceptible growth of knowledge in our own State, and we often find among township Boards of Health those who are informing themselves as to the best methods and the details of their successful application.

While it is neither possible or our desire to express preference for any one system of sewage disposal, since there are several successful plans and the question of choice is rather one of locality, we yet desire to draw attention to all the various methods and to have choice made under expert direction.

POLLUTION OF RIVERS.

This subject has attracted great attention in some of the closely populated cities of the old world, because so many of the rivers have been used as a source of water-supply, because of the crowded population on the banks, and because they not only received the sewage of these populations but the refuse of the numerous manufactories near them. It should receive the same attention with us since already some of our rivers have just the same conditions. Cities need to decide whether their rivers shall be used as the water-way for sewage or for potable water. They should not be used for both. Where several cities are on the banks of the same stream it is very possible for those on the upper waters to obtain a sufficiently pure water-supply, when it would not be for those near the outfall. It is important neither to overstate or underestimate the risks from the introduction of sewage into streams. It is a fact that fresh sewage admits of great purification in being mingled with large and rapidly-flowing streams. The study of natural processes, of animal and plant life, of the laws of organic matter, the examinations of chemistry and biology and the experience of physicians agree that often in the distance of a few miles the risks from sewage are much diminished. But, on the other hand, it is to be recognized that we should avail ourselves of sources of water-supply free from all risks. In the State of New Jersey there is not a town that cannot avail itself of a good water-supply. Our larger cities near New York have it in their power to secure water-rights such as will be of the greatest financial as well as sanitary benefit. Some of our rivers can thus be readily and profitably used to aid in the removal of the sewage. Others will need to be guarded with jealous care so as to be made available for a drinking-water supply. Still better can we avail ourselves of the abundant supplies amid the hills and mountainous districts of northern New Jersey, and of that deep underground supply which is found beneath nearly all of the cretaceous formation.

PUBLIC WATER-SUPPLIES.

The importance of a pure source of supply of drinking-water is impressed by the numerous cases in which disease is traced to the use of foul water. As a rule, no specific disease is produced, but there is
diarrhoea or some waste of vital force in overcoming the evil. As water is rapidly absorbed without digestive changes, and as it passes to every part of the system, it seems more apt to cause disturbance than either improper air or improper food.

The convenience of having water introduced into houses is leading many of our smaller but growing towns to inquire as to the best sources of supply. Unfortunately, it is a subject upon which a great many promiscuous opinions are given. We can point to several towns in which serious mistakes have been made. Generally it has been because no expert guidance has been sought. In some cases the whole matter has been placed in the hands of some outside company, which is made so independent as not to be directly responsible to the governing authorities. Even where the company is formed by the most wealthy citizens, it sometimes comes to be too much managed as an investment. While we know of some exceptions, the rule is that those towns are wisest that own their own water-supply.

Where this is not possible or at first feasible, the city should have the right of purchase on well-defined terms. It is unfortunate that several of our cities in the vicinity of New York have not before this perfected a plan of general supply. It should be done without delay. Several of our cities which have a public water-supply depend on wells. In such cities the Board of Health should have a record of the wells and particulars as to their location and depth. A comparison of cases of sickness among those using the public and private water-supply is often desirable. The last season we have had occasion to trace an outbreak of typhoid fever depending on a well, and another on a cistern. Cases of dysentery or other intestinal disturbance are very often attributed to poor water by the attending physician. The use of driven wells is largely on the increase in the State. Asbury Park and Vineland are attempting a public water-supply from this source. The relations of our mountains, our forests, our valleys and of our water-bearing strata are such as to insure a full and pure supply. It is culpable carelessness for us not to avail ourselves of these ready and abundant sources.

During the past year, more of our smaller towns than ever before have either resolved upon a public water-supply or are seeking sources from which to derive it.

The use of lead pipes is so common, and so many cases of lead-poisoning by water drawn through them have been reported, that the subject is well worthy of more extended inquiry. At one time block-tin pipes, or tin-lined lead pipes, were advocated. These latter are subject to rapid corrosion, as the least exposure of lead in the presence of tin produces a voltaic action. It was at first found that very soft waters dissolved the oxide of lead which had been formed by the combining of the dissolved oxygen of the water with the lead much more rapidly than hard water. Further investigations of Frankland and others showed that the presence of sulphates, carbonates or phosphates in the water protect the metal because the oxide which is formed is converted into a basic carbonate or phosphate or a sulphate, but sparingly soluble. Thus the lead pipe became protected by a covering which underwent little change. If, however, free carbonic acid was present in the water, there was greater solubility. It was found that the different susceptibility of soft and hard water is not uniform.

During the past year, Professors Crookes, Odling and Tidy have made some very accurate experiments, which seem to show that the presence of silica plays a very important part. Provided excess of alkali be absent, half a grain per gallon of silica in solution deprives even distilled water of any continuous action on lead. On the basis of this fact, filters have been constructed in which the water passes downward, first through sand then through broken flints and then through limestone. Thus enough silica is dissolved to reduce the lead-dissolving power of a water noted for its danger in this direction to a minimum. We have the authority of these eminent chemists that thus the danger from the use of lead pipes can be overcome. Water companies may easily avail themselves of these simple provisions. The whole subject is so well stated in an editorial of the London Lancet, of October last, that we quote as follows:

"The action of drinking-water on lead is a matter of such serious public importance, and is subject to so much apparent irregularity, that many investigations in regard to it have been undertaken. But the difficulties have not been entirely cleared up, and the further contribution to our knowledge, which was made at the last meeting of the British Association, is very welcome. The previous state of our knowledge may be summarized in a few words. The corrosion de-
PENDS ON THE SOLUBILITY OF OXIDE OF LEAD IN PURE WATER. THE DISSOLVED OXYGEN, ALWAYS PRESENT IN WATER, OXIDIZES THE LEAD, AND THE OXIDE DISSOLVES AS IT IS FORMED. VERY SOFT WATERS, AND ABOVE ALL DISTILLED WATER, ACT POWERFULLY AND CONTINUOUSLY. SOME SALTS, WHEN PRESENT, ESPECIALLY THE SALTS OF AMMONIA, INCREASE THE ACTION, WHILE OTHERS DIMINISH IT BY A SIMPLE CHEMICAL ACTION. THUS SULPHATES, CARBONATES, AND, AS WAS FIRST SHOWN BY DR. FRANKLAND, PHOSPHATES, PROTECT THE METAL REMARKABLY. WHEN NEW LEAD IS EXPOSED TO THE ACTION OF WATER CONTAINING ANY OF THESE SALTS, OXIDE IS INDEED FORMED, BUT IS IMMEDIATELY CONVERTED INTO THE VERY SPARINGLY SOLUBLE SULPHATE, BASIC CARBONATE, OR PHOSPHATE, AND THE LEAD IS THEREBY PROTECTED BY A CRUST, WHICH UNDERGOES BUT LITTLE FURTHER CHANGE. ON THE OTHER HAND, ANY UNUSUAL QUANTITY OF FREE CARBONIC ACID FAVORS SOLUTION OF THE METAL, FOR CARBONATE OF LEAD, LIKE THE CARBONATES OF CALCIUM, MAGNESIUM, ZINC AND IRON, IS SOLUBLE IN FREE CARBONIC ACID. THIS SOURCE OF LEAD POLLUTION HAS, WE THINK, BEEN VERY COMMONLY OVERLOOKED. THE NET RESULT OF ALL THESE OBSERVATIONS WAS THE BELIEF THAT HARD WATERS HAD BUT LITTLE ACTION, WHILE SOFT WATERS WERE LIABLE TO EXHIBIT A STRONG ACTION ON ORDINARY LEAD PIPES AND CISTERNS. SOME APPARENT DISCREPANCIES WERE GRADUALLY EXPLAINED. THUS THE VERY SOFT WATER OF THE BALA LAKE WAS FOUND TO HAVE LITTLE ACTION ON LEAD; BUT DR. FRANKLAND DISCOVERED THAT THIS WAS DUE TO PHOSPHATES, WHICH HAPPENED TO BE PRESENT IN UNUSUALLY LARGE QUANTITY. OTHER IRREGULARITIES WERE, HOWEVER, FROM TIME TO TIME NOTED, AND OUR KNOWLEDGE REMAINED IMPERFECT, WHILE THERE WAS NO REMEDY SUGGESTED EXCEPT THE AVOIDANCE OF LEAD, WHICH WOULD BE VERY INCONVENIENT, FOR BLOCK-TIN PIPES ARE TOO EXPENSIVE, WHILE TIN-LINED LEAD PIPES, ALTHOUGH EXCELLENT, REQUIRE THE GREATEST CARE IN PLUMBING, AS THE LEAST EXPOSURE OF LEAD IN THE PRESENCE OF TIN PRODUCES A VOLTAIC ACTION WHICH CAUSES RAPID CORROSION.

"THIS, THEN, WAS THE STATE OF OUR KNOWLEDGE WHEN PROFESSORS CROOKES, OLLING AND TIDY UNDERTOOK THE INVESTIGATION, THE RESULTS OF WHICH THEY READ AT THE BIRMINGHAM MEETING. THEY COMMENCED SYSTEMATICALLY BY DIVIDING THE WATERS INTO GROUPS, ACCORDING TO THEIR ACTION ON LEAD, AND THEIR TABLES SHOW AT A GLANCE THAT THE MERE VARIATIONS OF HARDNESS DO NOT ACCOUNT FOR THE VARIATIONS OF LEAD CORROSION—that, INDEED, A VERY SOFT WATER SOMETIMES EXERTED LESS ACTION THAN ONE WHICH WAS CONSIDERABLY HARDER. BUT THEY WERE SOON STRUCK BY A FACT PREVIOUSLY UNOBSERVED, WHICH AFFORDED THE CLUE WHICH GUIDED THEM IN THEIR SUBSEQUENT WORK. THE LEAST ACTION WAS ALWAYS OBSERVED IN THE WATER WHICH CONTAINED THE GREATEST QUANTITY OF SILICIC ACID. MANY MORE OBSERVATIONS WERE OF COURSE MADE, WHICH CONFIRMED THE EARLIER ONES, AND THEN A SERIES OF SYNTHETICAL EXPERIMENTS WERE UNDERTAKEN, IN WHICH SILICA IN DEFINITE QUANTITIES WAS ADDED TO THE WATER BEFORE EXPOSING IT TO THE ACTION OF LEAD. AT FIRST ALKALINE SODIUM SILICATE WAS TRIED, BUT AS IT WAS FOUND WORSE THAN USELESS, DIALED SILICIC ACID WAS SUBSTITUTED WITH PERFECT SUCCESS. THEN FOLLOWED A SERIES OF TRIALS WITH POWDERED GLASS, GRANITE, FLINT, AGATE AND CHALCEDONY. ALL OF THESE HAD SOME BENEFICIAL EFFECT, BUT FLINT WAS ABOUT THE BEST, AND SUBSEQUENT EXPERIMENTS APPEAR TO LEAVE NO DOUBT THAT, PROVIDED EXCESS OF ALKALI BE ABSENT, HALF A GRAIN PER GALLON OF SILICA IN SOLUTION DEPRIVES EVEN DISTILLED WATER OF ANY CONTINUOUS ACTION ON LEAD. IT IS, HOWEVER, ESSENTIAL THAT THE SILICATION OF THE WATER SHALL BE MAINTAINED, AS OTHERWISE CORROSION WILL SET IN. HERE THERE WAS NOT ONLY AN EXPLANATION OF SOME, AT ANY RATE, OF THE IRREGULARITIES WHICH HAD PREVIOUSLY BEEN MOST PUZZLING, BUT THE SUGGESTION OF A POSSIBLE REMEDY.

"ON THESE NEW LINES, NEW EXPERIMENTS WERE MADE, AND THE RESULT WAS THAT A SYSTEM WAS DESIGNED WHICH APPEARS TO BE AT ONCE EFFICIENT AND INEXPENSIVE, AND WHICH WE HOPE WILL STAND FURTHER TRIALS, AND TAKE PERMANENT PLACE AS ONE OF THE GREAT ACHIEVEMENTS OF APPLIED CHEMISTRY. FILTERS WERE CONSTRUCTED IN WHICH THE WATER PASSED DOWNWARDS, FIRST THROUGH SAND, THEN THROUGH BROKEN FLINTS, AND LASTLY THROUGH BUXTON LIMESTONE. THE WATER USED WAS THAT OF HUDDERSFIELD, WHICH IS VERY SOFT AND DISSOLVES MUCH LEAD. AFTER PASSING THROUGH THE FILTER WITH UNIFORM VELOCITY, IT WAS AGAIN ANALYSED, AND ITS ACTION ON LEAD AGAIN DETERMINED. THE TOTAL SOLIDS IN SOLUTION WERE FOUND TO HAVE UNDERGONE VERY LITTLE ACTUAL INCREASE—not more than about half a grain per gallon—but enough silica had been dissolved to reduce the "lead-dissolving power" of the water to one-thirtieth, the lead-dissolving power being the quantity of lead dissolved under similar conditions in a given time. IF SO SIMPLE A FILTER WILL PROTECT ALL WATER FROM LEAD POLLUTION, WATER COMPANIES WILL HAVE NO EXCUSE IF THEY DO NOT ADOPT IT; IT CANNOT INJURE, AND WILL PROBABLY IN EVERY CASE IMPROVE THE WATER IN ALL RESPECTS.

"THE AUTHORS OF THIS INTERESTING RESEARCH DISCUSS IN A SEPARATE SECTION THE QUESTION OF THE QUANTITY OF LEAD THAT MAY BE PERMITTED IN DRINKING-WATER. THEY QUOTE MANY AUTHORITIES, AND FROM THEM AND THEIR OWN OBSERVATIONS CONCLUDE THAT A WATER IS SAFE IF A FEW OUNCES TREATED WITHOUT EVAPORATION WITH SULPHURETTED HYDROGEN GIVES NO REACTION."

The observations of Dr. Sinclair White, Medical Officer of Health for Sheffield, as to the cases of frequent lead-poisoning by the water from the hills about Redmires, also shows some important facts, and especially that the solvent action of the water upon lead is practically destroyed by keeping it in contact for a time with freshly-broken surfaces of limestone, and that even when the lead has been taken up. Many of the domestic filters in current use entirely remove it.

THE FILTRATION OF WATER.

This is deservedly a subject that attracts much attention. It is done on a large scale in public water-supplies and in connection with
reservoirs. Besides there are the numberless contrivances known as house filters. If these did nothing else but to remove materials in suspension they would be of some value. It is not only pleasanter to use clear water, but these suspended articles act as irritants and are to be removed when possible. But besides a good filter sends the water in close contact with minute solid particles and by the minuteness of separation aids much in aeration.

The chief objection that has been urged is that they do not remove matter in solution and that they do not remove the micro-organisms which are believed to be the chief causes of disease. If they aid in aeration and remove some organic matter, they favor chemical action and also remove the materials on which the micro-organisms flourish. But the recent experiments of Dr. Frankland seem to show more than this. He reports that a filter of ferruginous green sand, six inches in thickness, entirely removed micro-organisms at first. Their vitality is greatly affected by agitation. The results of several recent experiments is to show that we need to restudy the value of various kinds of filters by the biological and chemical tests. Meanwhile it is to be borne in mind that a foul filter becomes the source of contamination. Many of the house filters do more harm than good. Those built on a large scale and with apparatus for washing and renewing the filter material are of great benefit. Those in use in private houses should admit of frequent refreshment or renewal of the filtering layers.

A recent paper on "Water Purification, its Biological and Chemical Basis," presented to the British Institution of Civil Engineers, by Dr. Percy F. Frankland, furnishes the following summary on the subject:

"The author stated that the earliest attempts to purify water dealt simply with the removal of visible suspended particles, but later chemists turned their attention to the matters present in solution in water. Since the advance of the germ theory of disease, and the known fact that living organisms were the cause of some, and probably of all, zymotic diseases, the demand for a test which should recognize the absence or presence of micro-organisms in water had become imperative. It was, however, only during the last few years that any such test had been set forth, and this was owing to Dr. Koch, of Berlin. By this means the only great step, which had been made since the last Rivers Pollution Commission, had been achieved. It had been supposed that most filtering materials offered little or no barrier to micro-organisms; but it was now known that many substances had this power to a greater or less degree. It had also been found that, in order to continue their efficiency, frequent renewal of the filtering materials was necessary. Vegetable carbon employed in the form of charcoal or coke was found to occupy a high place as a biological filter, although previously, owing to its chemical inactivity, it had been disregarded. Being an inexpensive material and easily renewed, it was destined to be of great service in the purification of water. Experiments were also made by the agitation of water with solid particles. It was found that very porous substances, like coke, animal and vegetable charcoal, were highly efficient in removing organized matter from water when the latter came in contact with them in this manner. Also, it was found that the well-known precipitation process introduced by Dr. Clark, for softening water with lime, had a most marked effect in removing micro-organisms from water. In the case of a water softened by this process, it was found that a reduction of 98 per cent. in the number of micro-organisms was effected, the chemical improvement being comparatively insignificant. Water which had been subjected to an exhaustive process of natural filtration had been found to be almost free from micro-organisms. Thus, the deep-well water obtained from the chalk near London contained as few as eight organisms per cubic centimeter, whereas samples of river water from the Thames, Lea and Wey had been known to contain as many thousands. The waters supplied to London had been regularly tested during the last fifteen months, and the most important and valuable information had been obtained as to the efficiency of the processes to which the water companies subjected the water supplied by them in removing micro-organisms, the average reduction during the last four months of the past year having been 97.9 per cent. for the Thames and 98.7 per cent. for the Lea. The biological testing of waters was of especial value to water-works engineers, for they now had a means of ascertaining with exactitude the working condition of filter-beds, instead of following the empirical methods generally in use."

BATHING ACCIDENTS.

During the past year, public attention has been attracted to the apparent increase of accidents by drowning along the New Jersey coast. This Board, some time since, drew attention to the fact that the number of such accidents is much greater than is generally supposed. In one year our record showed 193 deaths from this cause. The Circular No. VII. issued by this Board as to the management of cases has been largely distributed, and has been of some service. While giving all-needed particulars as to modes of mechanical manipulation, it especially insists upon the value of the electric battery and the hypodermic syringe. The great error in management along the
New Jersey coast is in the absence of any efficient organization—prompt and skillful attention to recovered bodies.

The bathing master is simply a person who warns bathers of what he considers as dangerous, and answers a cry for help by swimming out to the bather if he considers it safe so to do. Often boats and ropes are not at hand. If a boat goes out, it has no person with the oarsman ready to deal with the recovered person before the shore is reached. A battery or a syringe for administering brandy are not near at hand. Even those not dead, on reaching shore, not infrequently perish. A child, the last summer, was drowned in Wesley lake, and a gentleman near Spring Lake, under circumstances which well illustrated the inefficiency of present methods. The waiting until the body is recovered, the running to and fro, the late arrival of doctors, batteries, stimulants and the promiscuous rolling about of the body would commendable diligence on the part of belated sympathizers, if it were not possible to be shown a more excellent way. We once examined a member of a life-saving station as to his knowledge of methods, and were glad to find him fully acquainted with methods, although not having at hand some needed appliances. There is need of a life-saving bathers' association at the most populous resorts on our coast which will have all the advantages of organization and appliances, and be able to give system and skill to these efforts to rescue and revive those who have become exhausted in the water. This Board will be glad to co-operate in organizing any such remedial or preventive system. The result would not only be the recovery of more, but the prevention of so many exposures.

IMPORTATION OF RAGS.

During March, 1886, and for some time subsequently, this Board had occasion for considerable correspondence as to the importation of rags. It occurred from the fact that by consent of the United States Treasury Department, old rags imported from foreign countries are admitted to entry at the custom house of any city or other locality upon the production of a permit from the health officer or Health Board thereof. The requirements of the port of New York being somewhat strict, Perth Amboy and some other ports in New Jersey afford convenient ports of discharge if the permission of the local health authorities can be secured. In the case referred to, the authorities of Perth Amboy allowed the removal and reshipment of the rags. The Secretary of the State Board made a full investigation of the general facts as to the subject of rag importation, and as to this special case. The whole matter was carefully considered by the Board. While this particular case did not call for the exercise of the powers conferred by Section 9 of the General Health Law, it is evident that any period of epidemic or its threatening may require the exercise of this power. Until there is some more definite action on the part of the general government, each case needs to be dealt with in reference to the port of lading and other facts. But our health officers are cautioned as to the danger that may arise from any lax methods of inquiry. This Board will exercise the power conferred upon it if any case of exigency arises.

REGULATION OF CEMETERIES.

The proper location of cemeteries and grave-yards has this year been brought prominently into notice by the granting of a temporary injunction as to the Weehawken Cemetery in Hudson county. The facts presented in England, by Edwin Chadwick and many other authorities, as to intramural interments, have been fully corroborated. The investigations of Rauch, Wickes, Warman and others in the United States fully confirm the view that there should be legal and sanitary regulation as to cemeteries. Our own State law requiring the consent of Boards of Health in the location of cemeteries is valuable. Great care should be exercised in the choice of suitable soil and elevation of site, and suitable position as respects houses and sources of water-supply. There also should be regulations as to sufficient space, and as to the management. The following selection from the directions of the local Government Board of Great Britain will be found of value:

"I. The soil of a cemetery should be of an open, porous nature, with numerous close interstices, through which air and moisture may pass in a finely divided state freely in every direction. In such a soil decay proceeds rapidly, and the products of decomposition are absorbed or oxidized. The soil should be easily worked, yet not so loose as to render the work of excavation dangerous through the liability to falls of earth. It should be free from water or hard rock to a depth of at least eight feet. If not naturally free from water, it should be drained if practicable to that depth; to this end it is necessary that
the site should be sufficiently elevated above the drainage level of the locality, either naturally, or, where necessary, by filling it up to the required level with suitable earth.

"Loam and sand with a sufficient quantity of vegetable mould, are the best soils; clay and loose stones the worst. A dense clay is laborious to work and difficult to drain; by excluding moisture and air it retards decay, and it retains, in a concentrated state, the products of decomposition, sometimes to be discharged into graves opened in the vicinity, or sometimes to escape through cracks in the ground to the surface. A loose, stony soil, on the other hand, allows the passage of effluvia.

"II. The situation of a cemetery requires consideration from several points of view, of which the most important are its position with reference to dwelling-places and sources of domestic water-supply. While public convenience requires that the cemetery shall not be too far distant from the population for which it is intended, a due regard to public health requires that it shall not be dangerously near. The most suitable distance will vary in different cases; it will be greater in the case of a large than of a small cemetery, greater also in the case of a large and rapidly extending town than in that of a small and stationary village.

"In view of the evils which in former times have undoubtedly arisen from the practice of intramural sepulture, and also because the erection of houses near a cemetery interferes with the free play of air around and over it, it is desirable that the site of the cemetery should be in a neighborhood in which building is not likely to take place, and also that so far as practicable a belt of ground should be reserved between the graves and the nearest land on which a house may be built, in order to obviate to some extent the risk of contamination of ground air and subsoil water with decomposing matters. This is especially necessary where houses are constructed with cellars. It is, therefore, highly desirable that interments should not be made up to the extreme edge of the cemetery, and it would be possible without great waste of space to reserve in all cases a strip of ground free from interments, 15 to 30 feet in width, around the whole cemetery on the interior of the boundary fence. This strip would afford room, on the inside, for a gravel or asphalt walk to give access to all parts of the cemetery, and on the outside, next the fence, to a belt of trees, the rootlets of which penetrating the soil would arrest and assimilate any decomposing matters percolating to the exterior of the cemetery. Obviously a cemetery should not be placed on elevated ground above houses, where the soakings from it may percolate to the sites and foundations of the dwellings below.

"The precautions to be taken to avoid pollution of wells and springs in the neighborhood of a cemetery will depend much upon local circumstances; they may be said to be, 1st, the intervention of a sufficient space between the cemetery and the water source; 2d, proper drainage,
= 1,210 square yards per 1,000 inhabitants, which is the usually estimated minimum. The desirability, however, of providing more than this bare minimum of space is obvious and is generally recognized."

So long as the present unsanitary methods of confining and boxing bodies prevail, it is not surprising that advocates for cremation are found, and that no uniform rule can be given as to the time needed for decay. As it is, we must needs be guided by the opinions of careful observers and the facts of experience. Churches and school-houses located amid grave-yards, and provided with furnaces in the cellars, are especially hazardous.

Thus far three maps of new cemeteries have been filed at this office.

HYDROPHOBIA.

During the past year the attention of the public, of medical men, and especially of sanitarians, has been drawn to the treatment of hydrophobia. What is known as Pasteur's method could not but excite the interest of every one that feels for those subjected to such a terrible malady. Our own interest has been enhanced by the cases of the Newark children, although it must be confessed that they throw no light upon the success of the treatment. The hope of Pasteur and the plan of his treatment is a natural outgrowth of what may now be called one of the most encouraging prospects of sanitary science and art. It is based upon the idea that a large number of the communicable diseases result from the introduction into the system of a specific micro-organism or microphyle. This has been certainly proven as to the disease known as anthrax or splenic fever, and has been rendered very probable as to several other diseases. It was a bold thought to apply the principle to the treatment of so obscure and virulent a disease as rabies. Knowing that the virus of other diseases had been attenuated or made benign by successive inoculations and by exposure to the oxygen of the air, Pasteur thought that in the case of rabies the virus was most likely to abound in the brain and spinal cord. It was found that this taken from the rabid dog and injected into rabbits would quite uniformly produce the disease in fifteen days. That the disease thus produced is the same seems to be proven by the fact that the virus taken from the rabbits will in turn cause the disease. It was found that the virus was made more intense by inoculation in rabbits; also that it could be secured of varying degrees of strength by varying periods of suspension in dry air. The temperature and the thinness of the cord exposed govern as to the time needed. It is thus possible to have pieces of different degrees of virulence desired, and at stated intervals introduce that of higher potency. Pasteur, having tested the method on lower animals, made his first successive inoculations on the human being July 6th, 1885, on a boy that had been bitten July 4th. Since then large numbers have been operated upon with apparently as uniformly successful results as could have been expected. It is not reasonable to claim that the treatment is not sustained because there is an occasional exception. The case is well stated by Dr. C. R. Drysdale, the senior physician of the Metropolitan Free Hospital, of London, as follows. Under date of June 3d, 1886, he says:

"Having during the past week seen more than 250 inoculations performed in the Rue Vaquelin, and read over a number of the histories of patients operated on by Dr. Roux, I have come to the conclusion that there is no longer any reasonable doubt of the immense advance made in therapeutics by M. Pasteur's process for the cure of hydrophobia. The statistics are so telling that no one, I think, can read them without feeling convinced that an all-important discovery has been made. M. Grancher, whose abilities as a physician all are aware of, takes the date of April 22d, 1886, as the one which allows of his drawing a conclusion warranted by the length of incubation of hydrophobia, and then shows that M. Pasteur has treated ninety-six cases of persons who had been bitten by dogs which were proved to be rabid because other animals bitten by them had died rabid, or because rabbits inoculated from their brain and spinal cord had succumbed to the disease. Of these ninety-six cases there was only one death. Again, of 644 cases of bites by dogs which were certified as rabid by the veterinary practitioner of the commune when they were bitten, only three of those treated died. Taking these two groups together, the death-rate of those treated was only 0.76 per cent., against 16 per cent., which is the death-rate assigned to a similar set of cases by M. Leblanc, Veterinary Surgeon of the City of Paris, where patients had been treated by other methods. In addition to these, M. Pasteur has treated forty-eight persons bitten by rabid wolves, and seven of these, or 14 per cent., have died, whereas the death-rate of persons bitten by wolves has been shown by M. Brouardel to be 66.5 per cent. Putting these facts together, M. Grancher contends, with truth, that Pasteur's treatment is twenty-three times as successful against the bites of dogs as the treatments of past times."
November 2d, 1886, M. Pasteur read before the French Academy of Medicine a paper giving a grand result of the first twelve months of his hydrophobia inoculations. During that time 2,490 patients, a vast proportion of whom had been bitten by dogs undoubtedly mad, had been treated by his method. Of these 1,700 came from France and Algeria. Out of the entire number only 10 succumbed. M. Pasteur assumes that very few persons bitten in France during the past year neglected to visit him.

Much of M. Pasteur's communication dealt with the improvements and modifications adopted in inoculations since the death of the three Russians. The inoculations are now stronger, more rapid and are made with fresher rabio matter. He thinks these statistics are ample proof of the success of his method.

The English Commission and Surgeon Sternberg and other competent experts have confirmed the accuracy of the methods and the reliability of the statistics, if indeed Pasteur's methods needed any such testimony. This does not mean that the feasibility of inoculating all persons claimed to have been bitten by mad dogs is proven, or that there is not yet much truth to break forth on the entire parasitic theory of disease. But as this mode of treatment is in the direct line with the treatment of anthrax, chicken cholera, etc., and as the relation of micro-organisms to several communicable human diseases seems highly supposable, it at least becomes the sanitarian, in his study of the causes of disease, to keep such facts close in view.

In the meantime, we are not to forget that very many bitten by rabid dogs do not develop hydrophobia; also that there is reason to believe that rapid and thorough attention to the bitten part is of great importance. The direction given by the chief surgeon of the London metropolitan police, in a recent circular and in view of some recent studies, is as follows: "When possible, apply a ligature above the part bitten; have prompt and thorough suction of the wound, freely washing it with water and applying absolute phenol (pure carbolic acid). The person sucking the wound (usually the patient himself) should spit out all matter sucked and freely wash out the mouth with water. A punctured wound should also have a crucial incision."

Another good direction is as follows:

"The wounds should be most thoroughly washed out—deep wounds by means of a syringe—with a warm, weak solution of permanganate of potash; punctured wounds being first incised, and bleeding encouraged. After this has been done, each wound should be carefully wiped, and powdered permanganate of potash rubbed into it. When the wounds are deep, injections of a 5 per cent. solution of permanganate should be had recourse to. Now, what are the objects of this treatment? They are (a) to cause the expulsion of as much of the virus as possible; (b) to neutralize any virus that may remain; and (c) to cauterize the part so as to convert it into dead tissue, which, as we know, is incapable of performing the process of absorption."

SMALL-POX AND VACCINATION.

It is quite noticeable that at periods varying from five to seven years there is apt to be in all larger cities an epidemic of small-pox. The same is true to some degree of scarlet fever and measles. This does not arise from any ascertainable law of periodicity, but is believed to be owing to the fact that this is the period of first school age in which so many children who have been kept at home come to mingle more fully with the outer world. In the case of small-pox all this might be prevented if only vaccination was thoroughly practiced. It is generally neglected by a sufficient number to furnish the material for its propagation and extension. On this basis small-pox will soon be due in some of the larger cities of the State. The outbreak in Canada has been more extended than otherwise, because of a superstitious opposition to compulsory vaccination on the part of the Canadian French. Cases have recently occurred in Philadelphia and Brooklyn. It is a disease so communicable that but few of the unvaccinated escape. Let local Boards at once take warning.

The law of this State, Chapter CLV., Laws of 1880, Section 10 (page 8 of Circular LIIV.), requires that the enrollment by district clerks of schools should show what children within the school age are unvaccinated, and provides for vaccination at the expense of the township where the parents are unable to pay therefor. Section 11 of Chapter CLV., Laws of 1882 (page 10 of Circular LIIV.), gives power to trustees of schools to exclude from school all unvaccinated children and teachers at the time when a case or cases exist in the vicinity. If the district clerks would inform families of these laws, and also urge the vaccination of younger children, it would greatly add to the public protection.

Circular XLIV. of the Board gives full directions as to the pro-
curement of lymph, and as to the precautions to be taken as to this and other communicable diseases. In Germany, since 1874, all children are required to be vaccinated in early childhood, and again at twelve years of age. The diminution of the disease has fully justified the law. The same can be said in England, where vaccination is also compulsory. We have believed that in this country we can attain the object better by information, persuasion and the provisions of the school law. We need to urge upon all teachers and all families, and all who have the care of children, the importance of ascertaining how many have been vaccinated, as also of urging upon all the need of attention thereto.

OUR SUMMER RESORTS.

Among the most important and successful industries of the State is the provision of places of resort for our own population and the multitudes from other States who have already found some of the great advantages possessed by New Jersey. It is not merely that its general location affords a medium between the rigor of the more Northern States and the heat of the Southern lands. The great diversity of mountain and valley, the number of natural lakes, the protection of great forests, the dry and warm character of some of the soils, and the beautiful expanse of sea-shore, with the very ready means of access from every part of the country, insures a constant increase of visitation and permanent population, if only the natural healthfulness of these resorts is carefully guarded; for it must be remembered that the tendency of the rapid aggregation of people in temporary resorts is always to deteriorate the standard of healthfulness. Much of the work is done in a great hurry. Jerry building, housekeeping regulated if not attempted by speculating men, water and cesspool arrangements by butchers, a fine show of exterior, and a slighting of that which the transient boarder is not likely to inspect, are the temptations presented. Too often the result is recorded in an unrefreshed return to the winter home, or in more sudden sickness.

This State Board early turned its attention to these places of resort, and by the aid of its inspectors and of owners, is generally able to secure the needed improvements. The exceptions are where some local Board slurs over its duty for fear of some wealthy owner of a hotel, or where the owner has such exalted views of his own sanitary competency that he is ready to make crude devices of his own. We must insist that those who invite the people to come to places offered to them because of the claim of especial healthfulness, are under obligation to look to complete drainage, to a good water-supply, and to a complete protection of the soil from all pollution. An indignant professor, whose family got sick, has recently written an indignant letter on "The Risks of a Summer Holiday."

It is not fair to allure people to places called "health resorts," unless they offer special inducements in the line of health. It is reasonable to expect that they will be and be kept under the best sanitary administration.

"A moment's reflection must convince any one that the fact of any particular place having a high reputation for its hygienic qualities is certain to expose its inhabitants and those who visit the locality to special risks. The convalescent from maladies of all classes, and more especially the 'catching' diseases, always seek 'change of air,' and they are pretty sure to go, or be taken, to places, probably by the seaside, which are renowned for their restorative properties. Practically, therefore, just as a district naturally free from phthisical affections is sure to be crowded with the victims of lung disease, so a healthful locality is likely to be frequented by the unhealthy. There is no help for this, and the fact must be faced; but in so far as infectious or contagious diseases are concerned, there ought to be special measures taken to protect visitors to places of general resort for health purposes from the needless peril of unsuspected morbid poisons.

"We do not desire to overstate the perils which beset those who go from home to seek health, but it cannot be disputed that the danger indicated is a very considerable one. It is not enough to consult the death-rate of a locality, and to assume the sanitary perfection of a district which does not happen to have had many deaths from zymotic disease. There are many maladies which do not directly kill. It would be interesting, though painfully so, to be able to tabulate the cases of disastrous illness distinctly traceable to the contraction of diseases at health resorts which, having only an insignificant proportion of deaths from infectious disease recorded against them, contrive to keep up their character. In short, we should deal with disease rather than death, or rather with the prevention of both."

The following summary will show with what care such conditions are registered at the English resorts:

"The statistics bearing upon the recent health of English watering-places, published in the Registrar-General's Quarterly Return, just issued, must afford considerable satisfaction to the thousands who are
CONTROL OF COMMUNICABLE DISEASES.

The plans for the control of communicable diseases have through past times undergone many modifications. One of the first was to flee from the sick and stone the physician in attendance because he had been exposed to contamination.

Another was to cast out as unclean those who were affected, or to practically kill them by neglect.

Next came the thought that as some one of these attacks seemed to secure immunity from future attacks, it was best to expose persons thereto under unfavorable conditions. This method never obtained much headway except in the modified exposure of inoculation for small-pox.

Next came the protection of vaccination, which has proved such a blessing in the prevention of variola. Unfortunately we cannot say with confidence that this has yet been practically extended to any other human disease. But what has been done as to splenic fever or anthrax among animals, as to chicken cholera and as to hydrophobia, at least excites great hopefulness that the sphere of this form of prophylaxis may yet be greatly extended.

At present, the three great advances that have been made are (a) in the hygienic care of persons and their surroundings; (b) in methods of general prophylaxis and disinfection, and (c) in the isolation and nursing of the sick.

The care of persons and surroundings has chiefly to do with a conformity to all the conditions of health in the individual, and such attention to drainage and cleanliness and all surroundings, and to all things received into the system from without, as accords with what are believed to be the laws of health. The methods of general prophylaxis and disinfection involve the use of certain materials known as disinfectants, for the purpose of destroying those particles which are believed to cause disease, or of depriving them of the soil in which they are wont to flourish. Some physicians also believe that the same principle is to be applied to persons, and therefore adopt in times of epidemic a treatment which they believe renders the human system sterilized to the culture of these disease-breeding intruders. The third method, that of isolation and care of the sick, has especially been productive of valuable results in late years. It has, over and
over again, been shown that by systematized methods contagious diseases are prevented from spreading to those of the same household, and that endemics do not become epidemics. This plan of separation is now almost universally recognized as desirable, besides such care of and attention to the patient, as to excretions and secretions, cleanliness and surroundings, and all good care-taking as dilutes, modifies or destroys all contagion-bearing emanations. Our chief difficulty is, that while among all intelligent physicians and nurses this view is held, practically it is, so often, not well applied. The physician often has not the time or is not impressed with it as his duty to see to the minute fulfilling of all details, although the result all depends upon this systematic and sustained minuteness. Upon it, to a very large degree, depends success in the prevention of epidemics.

THE BREATH AND DISEASE.

The importance of a proper condition of the mouth, the teeth, the fauces and the breath is not to be lost sight of in seeking to prevent the contagion of communicable diseases. We have good reason to believe that most of these diseases are communicated through the breath, or through organic particles conveyed thereby. If the mouth by rinsing, by cleansing of the teeth, and sometimes by the use of disinfectants, is kept in the very best condition, even where the disease exists or has existed, it is not near so likely to be transmitted.

We are more and more finding out, for instance, how often sore throat is communicated through the breath. There are many who believe that ordinary sore throats are communicable, as well as that they often form the soil in which specific forms like diphtheria find lodgment.

Dr. C. Haig-Brown, of Charterhouse School, England, in an analysis of 126 cases of ordinary tonsilitis, and in sketches of two epidemics of it, is convinced of its contagiousness. Follicular tonsilitis frequently affects all the children of a family. Independent of therapeutic value, we believe that the use of potassium chloride, ferrum chloride, quinine, sulphur and other disinfectants often prevents the transmission of throat affections.

NOTIFICATION OF CONTAGIOUS DISEASES.

Legislation has attempted to aid in preventing the spread of disease by laws as to the notification of disease. The law of this State is of
If Boards of Health have, as one of their objects, the prevention of the extension of communicable diseases, it would seem to follow as a corollary, that they have the right to know where such diseases exist. It is a parody on ethics to class as professional family secrets the concealment from a health officer that there is small-pox in Mr. A.'s family, or that Mr. B.'s children are having the scarlet fever or diphtheria. Nor can any judicial decision be found to sustain any who, under the assumption of an invasion of personal rights, claim that law has no right to obligate those in attendance upon cases of contagious disease to help guard the public health by such a kind of certification of the fact as this State so considerably provides for. If any individual health inspector or officer is impudent or annoying, let not the principle be disputed because of the person. The prevalent testimony as it reaches us, is that the health inspectors often prove of great advantage not only to the public health, but to the particular households concerned, where the contagion exists.

TYphoid FEVER AND DIPHTHERIA.

During the past year the Board issued a special circular as to typhoid fever and diphtheria. They have such undue prominence in all bills of mortality, and stand for so many days and years of sickness in those that recover, that they must receive our most diligent attention. We refer to the circular for certain facts as to them. More than any other of the communicable diseases their occurrence or severity is identified with the condition of surroundings. Upon these diseases more than any others, turns the decision of the question of origin, without an antecedent case. Such names as abdominal typhus, typho-malarial, cesspool and pythogenic fever seem to point to the fact that there may be modifications of old diseases that are hybrids, or somehow come to have an established type of their own. As to diphtheria, its relations to croup and to follicular tonsilitis and various forms of sore throat is still sub judice. The belief in its de novo origin is on the increase, but there is need of much close and recorded observation as to it. It is claimed that "on a slight and simple sore throat a diphtheric taint may be engrafted." Common sore throat is believed by many to be transmissible to those exposed to the breath. Dr. Haig-Brown is convinced of the contagiousness of tonsilitis. He sketches two epidemics that occurred in his practice.

Dr. Lees, of St. Mary's Hospital, London, says: "Many ordinary catarrhs are distinctly contagious." The following abstracts are from an address of R. Hingston Fox, M.D., in April last before the Medical Society of London:

"Tonsilitis and its relation to scarlatina and diphtheria has many suggestions worthy of thought in our dealing with some throat affections.

"Inflammations of the tonsils present manifold varieties and gradations. It is convenient to include in the general term 'tonsilitis' some forms of inflamed throat in which the implication of the tonsil is a less striking feature. The tonsils do not stand alone, but the mucous membrane in their vicinity is studded with nodules of similar structure—i.e., of lymphatic tissue; these are most abundant on the back of the tongue at its root, but exist also on the sides of the faunal aperture. The presence of these lymphatic organs is an especial characteristic of the fauces, and inflammations of the fauces, involving these structures generally, may well be included in the forms of tonsilitis. Catarrh of the fauces, however, such as is associated with nasal and pharyngeal catarrh, will not be considered here; it involves the tonsil little, if at all, and occurs in a different class of subjects from that affected by ordinary tonsilitis. Passing over the specific varieties, due to syphilis, tubercle, variola, &c., we meet commonly with certain clinical types of tonsilitis. By true quinsy I mean the recurrent 'inflammatory sore throat' (Trousseau), which results in abscess in or (more often) about one tonsil. The sudden onset, acute pyrexia, and rapid inflammatory edema are distinctive features. We come next to the common tonsilitis, long since clearly described by Dr. Ainstie, who distinguished it from the suppurative form. The term 'follicular' is often applied to this affection, being derived from the fact that the crypts on the surface of the tonsils, formerly called follicles, are often plugged with exudation (hence 'spotted throat'); it is a bad designation, since the word 'follicle' is now more often applied to the nodules of lymphoid tissue of which the gland consists. The name 'septic tonsilitis' is provisionally adopted here.

"A family of four children (age from four to eight years) began to ail three or four days after their return from the sea-side in September, 1884. The eldest girl was affected with headache, sore throat, coated tongue and loss of appetite. The other three children followed. Each was slightly feverish, the highest morning temperature (in the mouth) being 100.1°, 100°, 99°, and 100.8°. The fauces were red, both tonsils were swollen, and in one case they presented little pocky eminences. Within a fortnight all were well. Some of these children have at various times suffered from sore throats, true diphtheria, severe mumps, and rheumatism, as well as chronic enlargement of the tonsils. In searching for the cause of the tonsilitis, it transpired that, on their
arrival at home, the children had drunk greedily from a covered indoor cistern in which the water had stood stagnant and tepid for several weeks.

"These cases exemplify the leading features of septic tonsilitis in a mild form; its attacking a group of persons in one household, often children; the brief pyrexia; both tonsils are attacked at once, being swollen and reddened, and they may present small yellowish or grayish white patches. There is not the acute infiltration of the surrounding tissues seen in true quinsy. The cause seemed in these cases to be derived from impure drinking-water. * * *

"This disease has now and then prevailed in extensive outbreaks—either in a certain district, or in a school or other large institution. Instances of the first are reported by Dr. F. P. Atkinson and others, and by several French writers (Morell Mackenzie); of the second, by Mr. G. A. Cardew of Cheltenham, and by Dr. Haig-Brown of Godalming in a paper lately read before the Association of Medical Officers of Schools. Is there any connection between septic tonsilitis and true quinsy? Most English writers still make no distinction between them. Yet in typical cases they appear wholly distinct. Suppuration perhaps occurs in rare cases of the former affection, but this would not prove any connection with true quinsy.

"Tonsilitis, often of a severe type, is a prominent symptom in both scarlatina and diphtheria. This will be again referred to.

"We pass on to cases of a more mixed and doubtful character. In the proceedings of the Medical Society of London outbreaks of 'infectious sore throat' are described by Drs. Farquharson, Routh and Crisp. Dr. Routh's forty-six cases occurred in a public institution in which the drinking-water was impure. Three types were distinguished—simple erysipelas, sore throat with diphtheritic patches, and scarlatina. Dr. Crisp's outbreak was located in Cheltenham, along the river-side, and was attributed to the opening of some large drains. There were forty-two cases of 'mild scarlatina,' mainly in children, and fifty-six cases of 'epidemic sore throat' with large inflamed tonsils, mainly in adults who had had scarlatina already. Outbreaks of this mixed character have been described in several of Mr. W. H. Power's reports, and by Mr. Hartnoll, of Exeter; others have been recorded by Dr. Bond, of Gloucester, Dr. Mantle, of Chester-le-Street, and Dr. J. Craig, of Llandudno. The last three accord with the description of 'pseudo-diphtheritis,' given by Dr. H. Ashby, of Manchester, in the Practitioner (vol. xxxi., p. 414).

"These records show that it is not uncommon, in the presence of faults in the air or water-supply, for temporary outbreaks of mixed forms of tonsilitis to occur, sometimes infectious in their character. Cases which would commonly be described as scarlatina and as diphtheria, with others of mere tonsillitis, are found together, with cases of a mixed type, well-nigh impossible to assign to either of the former classes, and all apparently depending upon a common cause. Or the-

latter type may alone be present (pseudo-diphtheritis). Such outbreaks seem to hold an intermediate position between tonsilitis and the specific fevers. This leads me to the following proposition: that scarlatina and diphtheria may be regarded as essentially forms of tonsilitis which have acquired infective characters; that is, they differ from other forms of tonsilitis in having the power of infecting the system generally, and producing the phenomena of a specific disease. In speaking of these diseases as forms of tonsilitis, I would not do so in any narrow sense. They belong probably to that large class of diseases whose poisons reach the blood by way of the lymphatic system, their distinguishing character being that they are prone to enter that system through the tonsil, setting up tonsilitis. In ordinary tonsilitis the poison scarcely gets further than the tonsil. The term 'poison' is here used as a convenient expression for the organic materies morbi, capable of multiplication, and including (it is probable) both a bacterium and the products of its growth.

"The products of its growth do, indeed, enter the system, and cause some brief constitutional disturbance; but the living poison itself has little power of overcoming the resistance of the tissues. The system is not infected by it; it soon dies or loses its toxic properties, being incapable of reproducing itself in the human body to any great extent, if at all. Other poisons of the same class, but better adapted for living in the human organism, thrive therein, infecting the system generally, and producing symptoms of graver character and longer duration—in fact, running through the course of a specific fever (scarlatina or diphtheria). Such a poison is able to go on reproducing itself in the human tissues for a considerable period, and without losing its poisonous properties, so that by the time it is (to adopt Dr. Pagge's expression) destroyed by the pyrexia which it has set up it has caused the series of lesions belonging to the specific fever. It has also by this time become enormously multiplied, and particles of the tissues containing the poison being shed and communicated to other human beings, set on foot in them like processes, being, in fact, contagion. Now, in the power which the poison possesses of so far overcoming the resistance of the tissues of the human body as to reproduce itself largely therein without marked deterioration, so that offspring remotely removed from the original stock still produce the same effects in the tissues of a fresh human subject—in this power we may not recognize the characteristic of a species of disease? Some affections—e. g., various forms of infectious sore throat—possess this power in a limited degree, and chiefly when associated with septic conditions (as the presence of putrefying matter in air or water, &c.); but scarlatina has apparently an indefinite power of reproduction, and largely independent of septic conditions. In accordance with the doctrines of evolution, we may suppose that the specific poison has been gradually developed from the group of non-specific poisons of tonsilitis, which present a varying capacity of infecting the system.
REPORT OF THE BOARD OF HEALTH.

"The above scheme contains much that is hypothetical, but it furnishes an explanation of the facts already stated, especially of the occurrence of "intermediate forms." Some further facts will now be added in support of the theory. It is a frequent observation, made by Trousseau and by many others since, that common tonsilitis is very prevalent when either scarlatina or diphtheria is epidemic. Again, all these diseases are often either dependent for their spread on septic conditions, or are more active under such conditions. Some believe that scarlatina occasionally arises de novo under such circumstances, whilst many consider that diphtheria so arises. 'A striking feature of scarlatina is the great variability of its symptoms and of its course.' (Fagge.) Tonsilitis is, I submit, the most constant of its symptoms. It is notorious that in mild, scarcely recognized cases of scarlatina, sore throat is the only symptom observed. Yet such cases often communicate the disease. In other rare cases it is stated that a rash has been present, and no affection of the throat. Space will not admit of reference to the literature of this subject; I will only say that there is fair ground for question whether a tonsilitis, too slight to cause any complaint, did not exist in all such cases. In some cases of scarlatina, again, we see the tonsils covered with a thick membranous investment. Thomas and others say that true diphtheria is then concurrent. Niemeyer, Senator, and I think most English authorities, hold, on the other hand, that diphtheritic pharyngitis may be the result of the scarlatinal poison alone. Whichever view be taken, there appears to be a close connection between these two diseases.

"Diphtheria has been classed as an intermediate position between specific zymotic fevers and common local inflammatory diseases (Parsons), and some have even assigned it to the latter category. At any rate, it has not, as a specific fever, acquired the stability of scarlatina, measles, &c. Oertels (in Ziemssen's Cyclopaedia) and Loeffler have admirably maintained that the process in diphtheria is at first entirely local, the constitutional effects being due to a poison developed at the seat of attack—i.e., at the fauces in ordinary diphtheria. The primary local lesion also presents great variety. Senator describes four chief types, ranging from simple catarrh to fibrinous exudation. Yet the peculiar paralytic sequelae may follow in cases where the throat lesion was so slight as to be unrecognized. Some have maintained that ordinary tonsilitis is in rare instances followed by these paralytic states. Such cases surely belong to diphtheria; nevertheless, the statement illustrates our present point—the closeness with which this disease approaches to ordinary tonsilitis—so that there is hardly a line of demarcation between them."

We are convinced that an antisepctic condition of the mouth and throat is among the most important protections in the presence of a septic atmosphere, and especially of those contagions which there is reason to believe enter through the breath and are disposed to find lodgment and development amid the lymphatic tissue of the fauces.

It is to be borne in mind that the tonsils, and, to some degree, the adjoining membrane, are studded with sacs or nodules similar in structure to Peyer's glands, and that their structure is that of absorbent glands. "The tonsils," says Fox, "being themselves nurseries of young leucocytes, absorb certain elements to minister to the growth of the white cells. If septic air or particles are passed over them or mingled with the spittle, these, too, admit of absorption." In my own experience I think I have often seen the local irritation of the disease before it has become constitutional. Yet so rapid is the absorption and so quick the affecting of the glands and the blood, that it seems to many constitutional from the start. Dr. N. E. Davies, M.R.C.S., of Sherborne, thus expresses some views we have long entertained:

"It is a disease, the germ of which originates in filth, overcrowding and bad sanitary arrangements, is surely one subject to considerable amelioration, and, under the improving conditions of civilized life, eventful extinction—a malady which, if the researches of Bretonneau, Loeffler, and other celebrated pathologists, prove anything, is at first a local affection, and, therefore, one that ought, almost as a natural consequence, to be within the reach of medical treatment. It is a noteworthy fact that the part first attacked by this disease is that which is most accessible to the diphtherial bacteria—namely, the pharynx; and it is not surprising that childhood offers, as indeed it does to most zymotic diseases, the most favorable ground for the growth and development of the subtle poison of diphtheria—a poison that respects no condition of life and sweeps off with remorseless impartiality the offspring of the peer and the peasant.

"During the twenty years it has been my province to treat this disease, I have found, almost without exception, that the outbreak at first has been due to the contamination of water or milk with sewage saturated with human excrement, or with the overflow of earth privies in low, damp localities, and an interesting illustration of this came under my notice two years ago, when it was my duty as medical officer of health to investigate the cause of an epidemic in a little village near Sherborne, where an entire family of five children were destroyed by it, and where numerous other cases occurred, some of which ended fatally. In this case a spring of pure water was conveyed down a hill in a leaden pipe; this opened into a stone trough, and from this trough it again passed underground through some earthenware pipes (which were not cemented properly together) into a second trough, and thence it ran as an open stream through a thickly populated vil-
lavage lying in a valley about a quarter of a mile long. Now, between
the two troughs I have mentioned was an open privy, the liquid con-
tents of which had percolated through the earth, and thence through
the joints in the earthenware pipes into the second trough, afterwards,
of course, contaminating the whole stream in its downward course
through the village. Now mark this circumstance: a few houses near
the first trough used their water from that, and these escaped the epide-
ic; whereas, those who used their water from the second trough
and from the stream suffered more or less; and the family in which,
as I have mentioned, the five fatal cases occurred, went for their sup-
ply exclusively to the second trough, and therefore got the poison in
its most concentrated form.

"Now, what does the history of this epidemic teach? That, at all
events in its first incursion, the cause was strictly local, and that the
bacterial poison had its origin between the two troughs, and in the
most fatal period of the epidemic, infected its victims by the mouth
and alimentary canal through drinking the water. I opine that, such
being the case, it is only natural to suppose that in the spongy sub-
stance of the tonsillar glands the micrococci finds a congenial home,
and from thence by fibrinous infiltration and inflammation invades
the blood and the whole system, and this in some cases so rapidly as to
destroy life in a few hours. I call attention to this fact simply to show
that an epidemic, at all events at first, spreads by direct contact with
the poison—i. e., by imbibition. Afterwards, as a matter of course, it
may spread by other means, and its virulence be intensified by condi-
tions of climate and atmosphere.

"For the present it is wise and right, I believe, to agree with
Loeffler, Empis, Kellog, Avery, Bretonneau, and many other cele-
brated pathologists, that the disease is at first a local disease, and that
the constitutional symptoms depend upon general infection from this
local lesion, and their mildness or virulence upon locality, atmospheric
conditions, age, heredity, and the surroundings, healthy or unhealth-
y, of the victim; and perhaps I may add, the amount of the poison that
has been imbibed; and acting on this belief, how important it is, when
an outbreak occurs, to endeavor in every way to localize it and prevent
its spreading by means of contaminated water, milk, and clothing, or
by intercommunication with infected areas, and by energetic treat-
ment to stamp it out.

"My plan of treating the disease is as follows: I assume that the
case is treated in its early stage—the only stage in which local treat-
ment can really avail, for when once the blood becomes impregnated
with the fungoid micrococci or bacteria of diphtheria, the poison is
then deposited in organs, such as the trachea or the bronchi, beyond
the reach of local treatment; and it becomes a question whether the
constitution of the patient can eliminate the poison, and nature,
generous nourishment, iron, &c., once more re-establish convales-
cence. In the first place, in any affection of the throat I lose no
time in examining it, and watch carefully for the unmistakable was-
leather-like creeping deposit of diphtheria, or the symptoms of its
sister diseases, follicular tonsilitis, croup and scarlatina; if it turns
out to be diphtheria, I give a mixture containing six drachms of the
tincture of the perchloride of iron to five ounces of sweetened water,
and at this strength, undiluted, I insist that the child shall take every
hour, for twelve hours, a dessertspoonful (if the patient is older or an
adult, a much larger dose), and that this dose shall be repeated whether
vomiting occurs or not. At this strength I find in that time, or a
few hours more, that the growth has a shriveled look and its vitality
is destroyed. I then reduce the dose and extend the intervals, and,
as I believe, with many others, that iron has some specific power of
arresting the septic action of the poison in the system, continue it for
two or three days or longer, keeping up the strength with strong beef
tea, milk and port wine; if these cannot be taken, I use an enema
every four hours of equal parts of beef tea, port wine and cream or
milk. The advantages of this treatment over the local application of
cautions is that it reaches every part of the pharyngeal tract likely to
be affected, and is, as I mentioned before, strong enough, given in this
way, to destroy the vital virulence of the fungi of diphtheria; and I believe
here impress the absolute necessity of keeping a thorough draught of
fresh air constantly passing through the room, for how can it be
expected that a blood poison can be eliminated if it is continually
breathed again? As well might one attempt to resuscitate a person
dying from inhaling a poisonous gas without first taking the sufferer
into the open air. It is needless to say that this treatment, in the
generality of cases, should be supplemented by giving barley-water,
sweetened in the case of children, containing two drachms of chlorate
of potash or other antiseptic drug, to the pint, but I prefer chlorate
of potash, for it is not unpleasant to the taste, and children will drink
it readily."

The chlorate of potash may as well be administered in the iron
solution. A similar treatment, in less but frequent doses, for those
who have been exposed to the poison will, we think, diminish the
receptivity of the throat membrane and of the system and so prevent
attacks. But it is still more important to prevent those conditions of
foul dampness and confined polluted air, which either originate the
disease or are the determining factors in its propagation and virulence.
It is in the range and duty of our control far more than some imagine.

SANITARY OVERSIGHT OF SCHOOLS.

At the close of the last year, this Board, with the assistance of State
Superintendent Chapman, had begun an inquiry into the sanitary con-
dition of the school-houses of the State. The inquiry has proved to be of even more importance and advantage than was anticipated. The small question-book which was prepared was of itself suggestive of many of the real needs of our schools. As one copy was sent to be kept on file for the reference of school boards, trustees and teachers, it serves as a constant reminder of defects. The inquiry revealed some oversights and neglects which were promptly remedied. In all other cases it placed before the State Superintendent of Education and before this Board the great defects in some of the school-buildings and their appliances. The response to these inquiries has been so complete that more than 1,500 replies are on file. They will be duly tabulated and analyzed for the school report, and furnish the basis for the common advisement of the two departments. It has so far attracted the attention of a neighboring State as to have received therein the following notice:

"THE SCHOOLS OF NEW JERSEY.

"This sanitary survey is instituted with a view of ascertaining the exact condition of every school for the purpose of enforcing, as far as practicable, reforms of abuses that are known to exist in the State, both in large cities where schools are overcrowded and in rural districts where the buildings are old and ill-suited to school purposes. One of the practical benefits that has already been secured by the survey has been that dilatory local Boards have given some attention to the condition of their schools before returning the answers to the questions contained in the circular. Whitewash has appeared on the walls that knew it not before, and broken panes have been restored in dilapidated windows.

"The manner in which the survey is conducted is commendable. The questions propounded are intensely searching, and inquire into every feature and part of the school-buildings and their environments. There are fifty questions in the circular and a chart which enables those compiling the answers to give a definite plan of the school-rooms, the location of stores, sinks, blackboards and windows. The questions are intended to draw out the number of doors in each room, location of windows and size of panes, their distance from the ceiling and their location, whether before or behind the pupil. In the search for sanitary defects, inquiry is made concerning pools of water in the yards; how the building is heated and ventilated; the manner of preventing draughts of wind, positions of the blackboards, source of water-supply, depth of wells and its protection from surface pollution; whether closets are ever flushed, and if there are any dangerous nuisances near the house, such as barn-yards, slaughter-houses or stagnant pools; whether any provisions are made for hand and face washing, and whether the doors are made to swing outward as the law requires. All the fifty questions are necessary to a proper survey of the buildings."

The results thus secured will be followed up with correspondence and further inquiries until great changes will be wrought in the sanitary fitness of such buildings and appurtenances as are found to be in need of alteration.

As the teaching of hygiene, like most teaching, requires line upon line, precept upon precept, this advantage gained must be followed up by continuous instruction. It has been suggested to us that in every school-room a chart might be placed on the wall with such questions as these as a reminder:

"Is the temperature of this room now between 68 and 70?"
"Was this room well flushed with fresh air in the afternoon after the dismissal of the school?"
"Is the proportion of carbonic acid in the atmosphere of this room more than 6 parts in 10,000?"
"Is the ventilation of this room accomplished without draught upon any pupil?"
"Is the light now admitted without injury to any pupil?"
"What pupils are compelled to hold their books nearer to their eyes than 15 inches?"
"Is this owing to poor print, deficient light, improper desk, or is it a defect in the pupil's eye?"

Such suggestive questions are of service. We are glad to know that the Superintendent of Public Instruction and the various County Superintendents and teachers are now having their attention directed to the teaching of hygiene in the schools. What we desire to have appear in the life care of the people we must have taught to some extent in the schools. The child who is taught the requisites to sustained health and the self-control necessary to secure them has made no unimportant advance in education. Text-books are now at hand which will aid the teacher in doing efficient service in this department. The school circulars of this Board are at the command of all who will send for them.

SANITARY EDUCATION AND INSPECTION BY HEALTH INSPECTORS.

At one time sanitary science and art were regarded as simply incidental to other departments of knowledge. Hence, it was taken for
granted that every physician could give sanitary advice or perform the duties of a sanitary officer. Not only this, but builders, plumbers, architects, engineers, etc., were called upon to advise quite out of the domains of their respective callings. It is true of all these, and especially of medical knowledge, that they lay a good foundation for sanitary acquirements. But it is equally true that sanitary fitness for advice or administration requires special training and the acquisition of knowledge from various departments. It is not until one comes to recognize it as demanding special study and practice that either it or the individual find their proper place.

This has been so far recognized in Great Britain that eleven of its leading colleges, including the Universities of Oxford, Cambridge, Edinboro', Glasgow and Dublin, give special diplomas or degrees as to sanitary or public health qualifications. There are now about 250 of these authorized practitioners in Great Britain and its provinces. Besides this, the Sanitary Institute of Great Britain gives certificates to those who successfully pass the examinations.

The following series of questions are not only valuable as giving an idea of the standard, but may well be studied by all those who desire to test their own sanitary knowledge:

"Q. Why ought sewers to be ventilated? What circumstances favor the formation of foul gases in sewers, and how can new sewers be constructed so as to prevent or greatly reduce the formation of such gases?"

"A. To prevent the foul gases generated in the sewers from finding their way into dwellings, and to prevent any accumulation of such gases in the sewer itself. Bad construction, improper gradients (which allow the sewer to become a sewer of deposit, and not self-cleansing), insufficient flushing where such gradient cannot be obtained, dead ends, want of ventilation, defective joints which may allow of leakage from gas mains to enter sewer, and minor causes. New sewers should be constructed in straight lines from manhole to manhole, with a perfect invert having a uniform fall of sufficient gradient to allow them to be self-cleansing; of such shape as to give the maximum scour with the minimum friction surface; and so ventilated as to make it impossible for sewer gas to generate.

"Q. What is meant by disconnecting a house drain? Describe what adjuncts are necessary, and what arrangements shall be made for ventilation.

"A. By disconnecting a house drain is meant the severance of the drain from direct communication with the sewer, thereby preventing gases generated in the sewer entering the dwelling connected with it. A siphon trap. A downcast ventilator between the siphon and the premises, and an upcast ventilator at the head (or upper) end of the house drain, to be carried up its full diameter above the roof of the premises, thus permitting a free current of air to flow entirely through the drain.

"The direct communication between the house drain and the public sewer is thus cut off, and the house drain itself is constantly swept by a current of fresh air entering it at the lower opening, and having its exit. A slight increase in the fall of the house drain just before entering the trap will greatly assist in flushing the trap and preventing obstruction.

"Q. Explain the following processes of purifying sewage, and describe the action in each case: (A) The lime and one other precipitation process. (B) Irrigation of land. How would you lay out the land for an irrigation farm, selecting your own conditions of situation and soil?"

"A. (A) The lime process consists of the admixture of slaked lime (cream of lime) with the sewage, which combining with the solids in suspension causes a heavy deposit to take place in the settlement bank which allows the effluent to discharge comparatively free from offensive matter.

"(B) The A. B. C. process as carried out at Leamington, consists of the addition to the sewage of alum, blood, charcoal and corn (hence its name) and I believe some small amount of manganous. This causes a deposit to take place in the shape of a dark colored mud—which may be used as a manure; the supernatant water then passes off to the outfall.

"The irrigation of land may be said to be the treatment of sewage by natural means, or the discharge of it upon land prepared by under-draining for its reception, which allows the sewage to percolate or filter through the soil into the system of underdrains, from whence it is conducted in an almost pure condition to the nearest stream or water-course.

"In laying out a sewage farm my first consideration would be an eligible site, where, by a gentle inclination, I could obtain an outfall for my effluent into a stream or brook. The conditions I should look for in the land would be such a soil as would be not too porous, as gravel, or too heavy, as clay, as the former would allow of too quick a filtration, and the latter to slow, besides being too retentive. I should, therefore, prefer a medium between these two—a good loam overlying gravel, which I should properly under-drain with agricultural pipes, which I should lead to my outfall. I should lay in carriers for distribution of the sewage on the surface of the land, which would be fed from duplicate tanks, and I should provide a storm overflow for excessive rain-falls, snow or floods.

"Q. Explain what is meant by ‘constant’ and ‘intermittent’ water-supply? What are the advantages and disadvantages of each? What precautions are necessary to prevent the water being polluted inside a house (A) with cisterns; (B) without cisterns?

"A. By the ‘constant’ system is meant the supply at high pressure at all times of water for domestic or other purposes, and its advantages consist in the fact that it is always fresh, as it does not require to be stored in cisterns, and it is always ready in case of fire. It also requires little or no fittings beyond the ordinary tap. Its defects are the liability to waste,
freezing in the pipes, and the fact that during repairs to the mains the district may be without water, and in some of the higher levels there may occasionally be a shortness of supply; but, even under these conditions, it is infinitely superior to the intermittent.

"The ‘intermittent’ supply. In this system the water for use must be stored in cisterns or other receptacles, and is liable to interruption by accident or neglect of the company’s servants, or the occasion of fire or frost. Again, the water having to be retained in cisterns is liable to pollution, the cisterns being very frequently so placed as to be difficult of access for cleansing, liable to the danger of gas emanations, lead-poisoning and fungoid growths; and the fittings required for this system are both costly and intricate.

"To prevent the pollution of water in a house where there are cisterns, it is essential that the cisterns receive a thorough and periodical cleansing; that they be situated in such a position that they be easily accessible for that purpose, safe from the danger of pollution by sewer or other gas, dust or atmospheric influences; they should not be connected with water-closets, a separate cistern being used for that purpose; the overflow or discharge pipe should be led on to an open gulley, and not connected, as is too frequently the case, with the drain. The copper ball-cock should receive attention, as it is frequently found corroded with verdigris; and above all the cistern should be thoroughly ventilated. In a house without cisterns the danger is chiefly from gas escape, and from the fact that often at higher levels the water-supply may fall short, and under these conditions the water-closets would prove a serious nuisance. There is also danger of bursting pipes when the pressure is renewed after a stoppage.

"Q. Give a description of an ordinary rain-gauge; mention the points to be observed in fixing it, in order to obtain a correct record of the amount of rain-fall; state the reasons for your opinion?

"A. An ordinary rain-gauge is a circular metal cylinder 5 inches in diameter, having an open funnel discharging the rain-fall caught therein into a graduated glass measure (graduated to $\frac{1}{10}$ of an inch). In fixing it, it should be set perfectly level, and permanent, to remain so, never less than 6 inches above ground or more than 12 inches, a mean between the two being general; it should be set upon level ground, at a distance from buildings, shrubs, trees, walls, &c., at the least as many feet from their base as they are high, equal to an angle of 90°. If a clear site is impossible, shelter from N.W., N, and E. is most enduring, less so from the S., S.E. and W., and not at all from the S.W. or N.E.

"Special care should be observed so as to keep all tall growing flowers away from the glasses. Gauge should be emptied at 9 a.m., and the result recorded against the previous day.

"One-twelfth depth of snow equivalent to water.

"Q. Describe the systems of ventilation that you would consider efficient for the ventilation of (A) a church, (B) a dwelling-house.

"A. In ventilating a church I should provide a series of protected air inlets near to the roof, above the heads of the congregation in the gallery. The air should pass freely through small perforations, so as to divide it into minute volumes, and below the floor line I would provide protected outlets; the heavy air passing down through the upper openings would mix freely with lighter ascending air, and thus cause a pure current free from draughts. A hot-air apparatus below the body of the church would assist this result.

"In a house I should apply the same principle, placing my ventilators behind the cornice. My calculations I should base thus. An ordinary fire in a grate requires 1,000 cubic feet of fresh air per minute; a gas-burner, 8 cube feet; a human being, 15 cube feet. Thus, a living-room calculated to accommodate ten persons, having a fire-place and two gas-jets, would require, to keep the atmosphere pure, $10 \times 15 + 10 \times 8 + 2 \cdot 15 + 1,000 = 1,166$ cube feet per minute; velocity of entering air, 3 feet per second. Openings to the extent of 19.58 cubic feet would supply sufficient air.

"Q. In what way does the size and shape of a sewer affect the velocity of the sewage flowing through it? If a 12-inch pipe sewer with an inclination of 1 in 200 gives a velocity of 3| feet per second, what velocity would it give if laid at an inclination of 1 in 500, the pipe running half full in each case? Would this latter velocity suffice to keep the sewer self-cleansing? To what extent could this velocity be practically increased by flushing?

"A. The size and shape of a sewer has a material effect upon the velocity of the sewage flowing through it, an elliptical sewer giving greater velocity of flow to small quantities of sewage than a circular one, as it exposes a smaller surface to be acted upon. In large volume I should prefer circular sewers, as the scour is decreased in proportion to depth; it is, therefore, obvious that a given quantity of sewage would be deeper in an elliptical than in a circular sewer; hence the bottom velocity would be less.

Velocity.

$$\frac{3.5 \cdot 200}{800} = 1.75 = \text{not sufficient to make sewer self-cleansing.}$$

<table>
<thead>
<tr>
<th>Value in Feet per Second</th>
<th>Equivalents in Miles per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>(14.142)</td>
</tr>
<tr>
<td>100</td>
<td>3.5</td>
</tr>
<tr>
<td>96</td>
<td>42.426</td>
</tr>
<tr>
<td>241</td>
<td>70.710</td>
</tr>
<tr>
<td>284</td>
<td>49.4970</td>
</tr>
<tr>
<td>282</td>
<td>221</td>
</tr>
<tr>
<td>11900</td>
<td>11286</td>
</tr>
<tr>
<td>60400</td>
<td>56564</td>
</tr>
</tbody>
</table>

4

"Broad irrigation I would not accept under any consideration, its defects being now so well established.

"Downward intermittent filtration and irrigation, in my opinion, the best process to obtain an effluent sufficiently pure to be admitted into streams with safety to both health and fish culture; but the system could only be carried out in situations where land could be obtained for the purpose.

"Precipitation is applicable to places where land is difficult to obtain for sewage purposes, and is capable of being carried out on limited areas, without danger or offensiveness, and a fairly pure effluent may be obtained, but it would be better if possible to add the irrigation process before finally allowing the effluent to enter a stream.

"Deodorization may be combined with above.

"Precipitation processes, there are many.

"Q. Under what circumstances would you adopt a glazed earthenware pipe sewer in preference to one in brick. How would you form a brick sewer in a running quicksand at a depth of 12 feet.

"A. In all cases where the sewer did not exceed 1 foot 6 inches in diameter, and there remained sufficient top soil to protect the pipes from breakage by traffic.

"I would construct my sewer in open close-timbered trench, providing sumps for the collection of the water to be pumped out of the trench. I would provide a subsoil drain below the concrete on which I should construct my invert. Then, as the brickwork proceeded, I should back it up with Portland cement concrete, and continue this by layers until I had the sewer entirely surrounded, as well as over the top.

"Q. What is meant by hard water? What sources usually furnish it, and what is meant by total hardness, and by permanent hardness?

"A. Hard water is understood to mean a water which destroys much soap arising from the formation of insoluble salts by the combination of the fatty acids of the soap with the lime and magnesia present in the water; and it is not until these mineral salts have become exhausted that a lather can be produced. This hardness arises from the presence of dissolved matters, including mineral salts, organic substances, and carbonic anhydride.

"Hard water is mostly derived from deep wells—especially in the limestone, new red sandstone, or chalk formation.

"Total hardness—the temporary and permanent hardness combined.

"Temporary hardness is that which is freed by boiling the water, and permanent hardness is that which remains after boiling.

"Hard water may be softened by adding lime as a filtering medium or as milk of lime mixed with the water and then allowed to settle. Softening by boiling resembles softening by lime as in Clarke's process.
same in good working order, thoroughly clean, and well ventilated; also ash-pits. All windows shall be opened daily at 10 a.m., weather permitting; beds and bed linen thoroughly exposed to atmospheric influences. All cases of illness or death to be at once reported to the local authority and medical officer of health. A copy of the local authority's by-laws and license to be exhibited in a conspicuous part of the premises; and the local authority, medical officer of health, surveyor, sanitary inspector, or any of the local officials, shall have free admittance at any hour, either by day or night. Criminals or noted bad characters shall not at any time be admitted under penalty of loss of license.

"Q. Describe in what manner you would construct a macadamized road upon a newly filled up ground. Give sketches of the construction of a macadamized road, and show the form of the surface and falls from the crown to the channel.

"A. I would first of all shape the ground to the same contour as the proposed finished surface, then thoroughly roll it with a heavy roller, if very treacherous; I should then well bush it (if wet or spongy, I should in addition cross drain it with agricultural pipes), then roll the bushes, then spread my layers of hard core, brick rubbish or chalk, which I would have broken to a 3 inches gauge, then again roll, then I would provide for a 3 inches coating of good, sound, clean gravel (the 3 inches thickness to be well rolled in), well watered and rolled to complete consolidation, finally watered and finished with a 3-inch or 4-inch coating of macadam, broken to a 21-inch gauge, watered and rolled to consolidation, the finished surface having a fall of ½ inch to a foot from crown to channel.

"N. B.—I, of course, assume the sewer is laid in and gulleys connected, otherwise the sewage or drainage is the first consideration, the gulleys being the data for the finished surface of road.

"Q. What volume of sewage would you provide for at the outfall sewer, from a town of 10,000 population, the drainage area being 550 acres, taking 25 gallons per head of water-supply, and ½ inch rain-fall in 24 hours?

"A. 2,471,055 gallons.

"Half an inch rain-fall equalling 11,200 gallons or 50 tons per acre.

"Q. In what way does the size and shape of a sewer affect the velocity of the sewage flowing through it? If a 12-inch pipe sewer with an inclination of 1 in 175 gives a velocity 3½ feet per second, what velocity would it give if laid at an inclination of 1 in 800 (the pipe running half full in each case), and would this latter velocity suffice to keep the sewer clear of deposit? To what extent could this velocity be practically increased by flushing?

"A. The size and shape of sewers have a material effect upon the velocity of the sewage flowing through them—elliptical sewers giving greater velocity of flow than circular ones—exposing as they do smaller surfaces to be acted upon by the sewage flowing through them. But where there is large volume I should prefer a circular sewer, the scour being decreased in propor-
tion to the depth of the liquid; it is obvious, therefore, that a given quantity of sewage would be deeper in an elliptical than in a circular sewer, and the down scour of bottom water decreasing with the depth.

"The velocity of flow in a sewer running half full at an inclination of 1 in 500, being 1 ft. 9 in. per second, would, in my opinion, be insufficient to keep the same free from deposit, but by increasing the head of water so as to give a flow of 8 ft. per second, the sewer should be free from deposit, provided always that the sewer is properly constructed.

"Q. In providing a water-supply to a town what are the chief points to which you would direct your attention if the supply is to be from (A) wells; (B) streams?

"A. (A) From wells, the geological situation of the towns surrounding, with a view to ascertain its probability of affording a sufficient supply, and its position as to gravitation, as to likelihood of being hard or soft water, and its purity.

"(B) From streams, the purity and sufficiency of supply, the amount of water that might be extracted from the river without interference with vested interests, its position as to utilization as a motor in case of pumping operations, if acted upon by tidal influences, and its liability to fail in supply in drought.

"Q. What are the most important points to be considered in examining the ventilation of a room? How much cubic space would you require per head in (A) sleeping-room; (B) in a sleeping and living-room?

"A. I would ascertain whether the window space was sufficient, and if made to open top and bottom; if a fire-place and chimney, with flue open to sky; height of room, its dryness or otherwise, and the amount of gas (if any) likely to be consumed in the rooms.

"The amount of space per head in (A), not less than 800 cubic feet; in (B), not less than 400 cubic feet; but I should prefer a much larger quantity, Professor Huxley's formula being 600 to 800 feet.

"Half the above quantity for children under 10 years.

"Q. What is meant by a gathering ground? Describe the conditions which have to be observed in selecting a gathering ground for the water-supply of a town. Upon what data would you base your calculations for providing a sufficient supply in all seasons?

"A. A 'gathering ground' is land that falls or drains into a river or stream; in fact, the water-shed, forming the source of supply to the stream, and is generally situated between the contour line of hills, by which it is often nearly surrounded.

"That the source of supply is pure, ample and not unduly hard; that there exist means, natural, if possible, or, if not, reasonable prospects of being able to impound the water, including rain-fall in winter for use in the dry season. I should carefully examine the soil to discover any fault or defect, that if the water were impounded it did not escape. I would also carefully examine for such a site as would allow the water from the reservoir to gravitate to the town.

"Taking forty gallons per head per day of population, I would allow for four months' consumption as storage water.

"Q. State the chief differences between river water and water derived from shallow wells and deep wells.

"A. River water being largely mixed with rain-fall and deriving a percentage from land drainage is generally soft, but may not be sufficiently pure for domestic use without mechanical filtration.

"In shallow wells the water is also sometimes soft, being chiefly derived from land drainage and rain-fall filtering through the land.

"In deep wells the water is generally very hard, and requires to be softened ere it is used, but it is also generally pure.

"Q. What is meant by the separate system of sewerage? In what circumstances would you advise its adoption?

"A. The separate system of sewerage means the separation of the sewage proper from surface drainage or storm water.

"The cases in which I would adopt it are: In towns that are subject to heavy floods, rain-falls, or in marsh lands, where leakages might occur.

"Q. What rules should be adhered to in regard to gradients, manholes, lampholes and ventilators, and flushing in a sewerage system?

"A. The following rules should apply to gradients: Should be such as will allow the sewer to be self-cleansing, and no greater (if avoidable) as too heavy a gradient has a wearing effect upon the sewer and in some cases at the intersection of sewers or gradients may cause an obstruction and possibly in floods a burst.

"Manholes should be constructed at all alterations of grade or direction, or at intersection, or at any point where it would be advisable to provide for flushing.

"Q. State some of the rules which should govern the question of sewage disposal at the outfall.

"A. That the effluent discharged from the sewer outfall should be non-polluting, and the following liquids should be inadmissible into any stream:

"1. Any liquid containing in suspension more than 3 parts by weight of dry mineral matter, or 1 part by weight of dry organic matter in 100,000 parts by weight of liquid.

"2. Any liquid containing in solution more than 2 parts by weight of organic carbon, or .3 parts by weight of organic nitrogen in 100,000 parts by weight of liquid.

"3. Any liquid which shall exhibit by daylight a distinct color when a stratum of it one inch deep is placed in a white porcelain or earthenware vessel.
REPORT OF THE BOARD OF HEALTH.

"4. Any liquid which contains in solution in 100,000 parts by weight more than 2 parts by weight of any metal, except calcium, magnesium, potassium and sodium.

"5. Any liquid which in 100,000 parts by weight contains whether in suspension or solution, in chemical combination or otherwise, more than .05 part by weight of metallic arsenic.

"6. Any liquid which, after acidification with sulphuric acid, contains in 100,000 parts by weight more than one part by weight of free chlorine.

"7. Any liquid which contains in 100,000 parts by weight more than one part by weight of sulphur, in the condition of either sulphurised or of a soluble sulphuret.

"8. Any liquid possessing an acidity greater than that which is produced by adding two parts by weight of real muriatic acid to 1,000 parts by weight of distilled water.

"9. Any liquid possessing an alkalinity greater than that produced by adding one part by weight of dry caustic soda to 1,000 parts by weight of distilled water.

"Q. Describe the conditions which have to be observed in selecting a 'gathering ground' for the water-supply of a town. Upon what data would you base your calculations for a sufficient supply in all seasons?

"A. In selecting a gathering ground I should first direct my attention to the streams situate within its area, and observe and test their amount of supply. Next, my attention to the position of any mills or other water-rights that might be interfered with by abstraction of water therefrom. Then to the facility of impounding, and the position of the site with regard to gravitation. I should then examine for the average amount of rain-fall that could be relied upon, and above all examine for the purity of the supply.

"I should base my calculations upon a supply of 40 gallons per head per day, allowing for double the present population, and impound for a four months' supply, irrespective of any rain-fall.

\[
\begin{align*}
\text{40 gallons} & \quad \text{domestic supply.} \\
25 \text{ gallons} & \quad \text{manufacturing.} \\
10 \text{ gallons} & \quad \text{water and fire contingencies.} \\
\end{align*}
\]

Mains under constant fire pressure.

"Q. State some of the most common ways in which water is polluted (A) before collection; (B) after collection and in the process of delivery to the houses; (C) after delivery to the houses. Describe the best means of preventing such pollution in each case.

"A. The pollution of water before collection arises from many causes, some of which consist in the discharge of sewers, manufacturing processes, and often from highly manured areas, which, during heavy rain-falls, carry quantities of diluted manure into the streams; also road drains, which during storms bring down large quantities of impurities. Insufficient filtrating, atmospheric influences, gas leakages, defective joints in the mains, and many minor causes.

SANITARY EDUCATION.

"By defective sanitary arrangements in the houses.

"To ascertain that the source of supply is undoubtedly pure and beyond such influences.

"To provide sufficient filtering area by using covered reservoirs properly aerated.

"Q. Describe the precautions necessary to prevent damp in buildings.

"A. The whole site (if wet) to be underdrained, then concreted, the walls to have a ventilated damp-proof course all round, and free circulation of air between the concrete flooring and the wooden flooring of room above, light and air being deadly enemies to damp.

"Q. Give a description of the process termed intermittent downward filtration. State what area of land you would require with a gravelly soil for applying this method of purifying sewage to a town with a population of 20,000 inhabitants; and state the arrangements you would adopt for dealing with the rain-water falling on the roofs, yards and streets.

"A. Intermittent downward filtration may be termed a natural system of purification of sewage by means of the filtering and aerating action of the soil; it is carried on by discharging (with or without previous precipitation) upon a properly prepared area, the sewage of the town under drainage. This sewage is carried upon the prepared area by a series of carriers, and then allowed to filter through the land into drains laid about 6 feet under ground, from whence it (as an effluent) is conducted to its outfall, mostly a river. The action upon the sewage is threefold—viz., evaporation, aeration, and filtration, and if properly conducted should give an effluent of a high standard. As to the amount of land requisite for the purification of the sewage of a town of 20,000 population, authorities differ, but taking the daily amount of sewage per head at 50 gallons, and the average of five persons to each house equal to 250 gallons per house per day, then the fact that this quantity must be got rid of in about eight hours, it would not be safe to reckon less than 1,000 gallons per house. Then taking 4,000 houses, there would be 4,000,000 gallons of sewage to deal with, which could be successfully treated on 5 acres of such land; but it would, of course, require that a very far larger amount should be provided, as no land could be expected to be constantly under treatment, and the least amount should be five times this quantity, so as to have only one-fifth under treatment. Great diversity of opinion exists upon this subject, and no very hard and fast line can be drawn. Each case must rest upon individual merits and local circumstances. With regard to dealing with rain-water from roofs, most of it should undoubtedly be stored for domestic use, as it is far too valuable to be uselessly wasted. Drainage from yards and roads should be conducted in separate channels (from the sewer proper) to a natural outfall; although often in storms the washings from roads may be nearly as bad as sewage; but, on the other hand, if the surface-water were admitted, the sewers would have to be greatly increased in size to provide for excessive rainfall.
"Q. In arranging the water-supply for a manufacturing town of 30,000 inhabitants, state what you consider of importance as to: (A) Sources of supply; (B) Quantity required; (C) Distribution.

"A. (A) The geographical situation of the town, as to the possibility of gravitation from rivers or otherwise; the geological situation of its surroundings, with a view to its probability of affording a sufficiency of supply and its nature as to hardness, &c.; the annual average annual rain-fall; what water rights, if any, existed; the present population and prospective rate of increase, and whether the town was a full w.c. one or otherwise. (B) Twenty-five to thirty gallons per head population. (C) Under pressure that all cisterns had bell-cocks and tell-tale overflows; that Deacon’s wastewater preventers were in use; that a thorough system of inspection existed to detect waste; that the mains were well laid and efficiently jointed, and that a sufficiency existed for immediate use in case of fire. In the constant service system there is very little, if any, waste—the returns from many towns showing none; but in the intermittent there is often a large amount of waste through neglect of the inhabitants and defective fittings. The screw-down tap somewhat modifies this, but it is a very slow and unsatisfactory way of drawing water.

"Q. In what ways is water liable to be polluted after collection, during its distribution to houses, and in houses? What means would you adopt to prevent such pollution?

"A. Water may become polluted after collection by fungoid growths and atmospheric influences (where exposed to such); during distribution, from imperfect pipes and joints allowing sewer or other gas to enter the mains; in houses, by improper fittings, such as a cistern in direct communication with the drain, or so placed as to be difficult of cleansing, and frequently not ventilated, and other minor causes.”

HEALTH INSPECTORS.

Boards of Health have in very many cases* come to realize that their greatest need is competent Inspectors. When such are found there is now more tendency properly to remunerate them. The Inspector needs to be a person that recognizes that much will depend upon courteous mode of inquiry, and a disposition to aid those who are found to have nuisances in getting rid of them. While sometimes there is need of great plainness of speech, a mild and respectful firmness is usually the most successful. But the Inspector must know the law, and also must know much as to sanitary matters. Unless he cannot only discern odors, but know how to advise as to the modes of preventing nuisances, he will be only partially successful. It is

for this reason that this Board has recently given special attention to informing local Inspectors as to their duties, as well as afforded them opportunity to acquire more of the requisite knowledge. On them, more than anyone else, depends the efficiency of health administration, and, consequently, the sanitary progress of the State.

BOARD OF HEALTH LIBRARY.

This Board early gave attention to the accumulation of such a library as would be of essential service to the sanitarians of the State. By reference to the Fifth Report (1881) there will be found a catalogue which furnishes a list of books in possession up to that time. It had been the intention of the Board to re-catalogue with the additions up to the present year. But as next year a change and re-arrangement of books will be more convenient, in the removal to enlarged quarters, it is deferred to that time. But the library is open to the use of all persons. Books are sent to members of Health Boards by mail, for use for two weeks, if they pay the postage or expressage. Thus, Inspectors, or those investigating any particular subject, can avail themselves of the best authorities. It is also our desire to place full files of the State Report, as far as possible, in all the public libraries of the State. If informed as to these we shall be glad, as far as possible, to supply copies.

NEW JERSEY SANITARY ASSOCIATION.

The New Jersey Sanitary Association continues to lend efficient aid to the sanitary information of our citizens. It commands the attendance of those well known as informed in various departments bearing on public and general sanitation. Members of Boards of Health and Health Inspectors find it a center of information as to the details of their work. The last session was held at Trenton, and fully occupied two days. By an arrangement, a portion of the time was given to papers and specific instruction to local Boards. Thus, this Board was able to secure several valuable lectures of direct instruction to our health officers. It is very important that all health officers improve this opportunity to obtain valuable assistance in their work. It is very noticeable that those who are recognized as the most efficient officers of local Boards are seldom absent. If so, it is safe to infer
that those of less experience or acquirement cannot afford to neglect so ready a method of availing themselves of the experience of others.

THE POTTERSVILLE SICKNESS.

In June last over 200 of the citizens of Pottersville, a small village on the border of Hunterdon county, were taken seriously ill. All of them had attended a church festival the evening previous, and all those taken ill had eaten of ice cream. As none was left over and no sickness occurred until several hours afterward, no satisfactory analysis could be made. The little dish-water that was left was examined, but nothing suspicious found. Twelve days after, one of the sick persons died. A chemical examination, made by Professors Austen and Wilbur, of Rutgers College, resulted in finding a minute quantity of arsenious acid. The report was as follows:

"Total weight of liver tested..5.09 oz.
Total weight of arsenic found..................................0.00462 grains.
Total weight of kidney tested.....................................3.58 oz.
Amount of arsenic obtained too slight to weigh,
but sufficient to show characteristic properties."

The amount of arsenic was so very small as to suggest the possibility of its being innocently contained in bismuth, or some other medicine. The cases of sickness have been extensively commented upon, and the possibility of some poisonous substance having been developed in the milk has been much discussed. It is known that from time to time there have been serious effects from the eating of cheese. So certain forms of cheese, producing such results, has come to be known as "sick" cheese. In July, 1885, Prof. Vaughan, of Michigan, of Michigan University, reported to the Board of Health of that State that he had discovered the poison, which is described as follows:

"It is a product of slight putrefaction in the cheese which probably occurs in the vat, as the curd has been known to poison a person. By this slight putrefaction, or excessive fermentation, as it may be called, a large amount of butyric acid is formed, and this in the presence of the casein of the cheese is capable of developing a poison. Different samples of poisonous cheese contain different amounts of the poison. The same weight of cheese from one cake furnished three times as much poison as that from another cake. The poison was obtained in long needle-shaped crystals, which are freely soluble in water, chloroform, alcohol and ether. The smallest visible fragment of a crystal placed upon the end of the tongue causes a sharp stinging pain at the point of application, and in a few minutes dryness and constriction of the throat. A slightly larger amount produced nausea, vomiting and diarrhea."

The poison is volatile at the temperature of boiling water, and for this reason even poisonous cheese may be eaten with impunity after being cooked. Prof. Vaughan called this alkaloid tyrotoxin. Since that time the same chemist has found tyrocin in a specimen of ice cream that caused serious sickness in eighteen cases, as also in specimens of good milk which had been kept under observation by him for several weeks. He speaks of it as a poison produced by fermentation and as "a ptomaine in all probability due either directly or indirectly to the growth of some micro-organism." As he has not yet obtained enough to make an ultimate analysis or for other tests, we must wait other developments. Long since, Lauder Brunton, M.D., of London, commented on the action of butyric acid as a nerve poison, and referred to the investigations of Otto Weber (1864) and Senator. This acid is very frequently present in the decompositions of milk. It acts directly on the nerve centers. It may exist in the milk before use or may be formed afterward. Speaking of it in another article, Dr. Brunton says: "It must not be forgotten that a man may be poisoned by substances formed in his own intestines as well as by poisons taken into them by the mouth." From some cause or other, it is certain that accidents or sicknesses are occurring too frequently from the use of frozen milk. It is so important and refreshing a food that more care needs to be exercised in its preparation. Sometimes the vanilla or other flavoreding used is believed to have caused the sickness. In other cases it has been traced to the gelatine which some use freely in preparing it. It is too often a very composite compound. If the milk is inferior or impure or stale, the freezing does not rectify it. In the case in hand, each family contributing prepared its own portion. So some had corn starch in it and some not. The milk was not merely of the usual mixture but of very different constituency. While much obscurity hangs about this particular case, it is well that it should serve as a caution as to careless or unguarded mixtures of whole milk, raw milk, cooked milk, gelatine, corn-starch milk or other compounds sold as ice cream.
THE LONG BRANCH MILK SICKNESS.

Early in August last a number of cases of milk sickness occurred at a hotel at Long Branch, which were fully investigated by Inspectors and Analysts of this Board. Dr. W. K. Newton made a thorough inquiry into all of the circumstances and procured samples of the milk. Chemical examination by S. Wallace and himself revealed the presence of the poisonous crystals of tyrotoxin, as in the cases reported by Prof. Vaughan. It transpired that the morning’s milk, from the same cows, did not contain the poison. It was found only in the milk that had been drawn at noon and then quickly placed in cans and brought to the hotel. The Inspectors believe that this abnormal fermentation occurred because the milk had not been cooled, and while warm from the animal heat of the cows had been transported and so shaken up in close cans. As this is the first case of the finding of the crystals of tyrotoxin in new milk, it will be well to subject other samples to similar transportation and find whether similar results are found. The use of milk is so necessary and indispensable that it is very important to guard every method of preserving its natural constituency or securing only its normal changes. It has long been known that its changes are peculiar and varied and that its powers of absorption are great. Its powers for evil as well as for good need to be accurately known and defined. It is found that the boiling of milk protects it from these changes. So it is often wise, especially in summer, to rely on boiled milk where its source and care can not be known.

DISEASES OF ANIMALS AS RELATED TO HUMAN HEALTH.

It is well that attention is being more directed to animals and animal diseases as related to the public health. We need to know what animal diseases can be communicated to mankind and under what circumstances either their meat or milk is unfit for food. It is now pretty certain that tuberculosis in animals is of the same nature as some forms of consumption in man. There are good authorities that believe that the milk of tuberculous cows fed in its raw state to infants will cause marasmus or some forms of wasting disease. It is certain that typhoid fever and scarlet fever have been conveyed by milk. It is probable that the same is true of erysipelas and diphtheria. Foot and mouth disease and some forms of aphaæ are no doubt directly communicable. More recent investigations made by Mr. Power and others under the direction of the Local Government Board of Great Britain seem to indicate that scarlet fever has an animal origin. There is much reason to believe that boils and forms of skin disease are excited by poor or diseased meat. Dr. Vacher, the health officer of Birkenhead, in his excellent article on foods in the Sanitary Record (1885), enumerates 17 diseases of animals that render a part or the whole of the carcass unfit for food. By proper abattoirs and Inspectors at them, it is possible to protect our markets from diseased meat. Newark and some other cities have Market Inspectors. But the meat and viscera of animals should also be seen at the time of slaughter. The attention of city authorities especially needs to be directed to this subject, and especially in the interest of the working classes, who are more likely to be imposed upon by second-rate meat.

Veterinarians and others who are concerned in watching the food-supply are aware that there is a great increase in the amount of poor meat that is offered for sale.

BOVINE SCARLATINA.

The fact of the conveyance of typhoid fever, diphtheria and scarlatina through milk supplies has for some time been recognized.

In some cases it has been conveyed to the milk by the addition of water. In other cases the milk itself seems to have been the absorbent of particles that have conveyed the disease. A new series of facts now seem to intimate that either the disease of scarlet fever is derived sometimes from the cow, or can be transmitted to and through the bovine species. In November, 1885, an outbreak of this fever occurred in Hendon, in England, that led to an investigation by the Local Government Board. The investigation has been conducted by Dr. W. H. Power and Dr. Kline with their usual precision. For details we must refer to Dr. Power’s report. It seems to establish the relation of cause and effect between the disease as found on the teats and elsewhere in the cows and that which was recognized as scarlatina by the medical attendants, in the many cases which were traced to this source, in Hendon and London. Whether the scarlatina as here found is the human form of a bovine disease, as Mr. Blythe seems to infer, or whether it is merely shown that the cow contracts the disease and that thus it may be retransmitted to the human organism is not clear.
Dr. Kline's experiments appear to confirm the identity of the bovine and the human disease in these cases. At any rate these facts and similar ones that have transpired as to the relations of human and animal diseases open up a most hopeful line of inquiry. We may not only find the similarity or identity of some of the communicable diseases of men and animals, but be able to attenuate them in their transmission so as to secure the material for prophylaxis.

THE DISPOSITION OF HOUSE-SEWAGE IN DISTRICTS NOT PROVIDED WITH SEWERS.

BY C. P. BASSETT, C.E.E.M., OF NEWARK, N. J.

It requires no little assumption to venture upon the well-furrowed soil surrounding the subjects of domestic wastes and their disposition. Increasingly hazardous is this step when approaching those familiar with many of the methods applied or suggested as salutary or remedial. This difficulty is none the less acute, that potent facts bearing on the subject are very generally disregarded, and warnings and advice grown old by repetition, are standing at the door of public opinion waiting patiently for recognition. It is not so much that we need more or even that we need better methods than are at hand, but that present knowledge be, in some measure, recognized and applied.

It is not my purpose to enlarge on the necessity for complete and efficient removal of house-sewage from the vicinity of dwellings; so much, at least, can be taken for granted.

The present statements must be concentrated on the means and methods for safely disposing of such wastes. It would not, however, be inappropriate at this stage of the subject to consider the character of these wastes. It is not possible, much less necessary, to enumerate the matters which combine to make up house-sewage; but a suggestion will be all that is needed to secure proper recognition here of their complexity and troublesome qualities.

Human excrement, which may be the medium for transmitting distinct disease germs; washings from the bath and laundry, which may be equally dangerous; and the multiform organic wastes of the kitchen and pantry are the main elements requiring consideration. Juicy steaks, poultry, pastry, broth or other rich food when it appears upon the table, has reached a point from which we may profitably observe the rapid changes in its form, disintegration and decomposition. The resulting sewage is usually offensive in proportion to the
original richness of the food. It is not within the limits of this paper to discuss or trace these interesting changes, but in considering the matter, it should not be forgotten that the refuse from the table and the kitchen sink may become as dangerous sewage as that which flows from the water-closet.

It would be interesting at this point to turn aside to consider what are the dangerous qualities of decomposing matter, their scope and limitations, how they enter into or affect the human system; but the microscopical or physiological phase of the question cannot now receive attention. Admitting the need of rendering harmless, or of removing beyond their dangerous influence the organic wastes incident to human existence, as soon as they are produced, we have left for consideration the varied conditions in different stages of civilization, and the complex problems which they produce, with the processes available for solution of the difficulties.

The question of health is certainly pre-eminent in this consideration. It should be followed closely, however, by economy, in order that the hygienic results desired may be most widely distributed and effective.

As we glance over the settled portions of the State, we are astonished that a subject confessedly of so much importance has received so little practical treatment. Health Boards and associations have sounded alarms; facts and information showing the needs and benefits of action have been gathered and distributed; in some cases, committees have been appointed to collect added information or remove flagrant evils; in some sections, real progress has lately been made, but in the main, the rut in "which our fathers trod," has been made to serve later and more crowded travel. In the midst of this careless indifference, the situation becomes more threatening, and death-rates are creeping up in some localities.

If the hidden indecencies in many of the towns of the State were revealed in conjunction with those readily apparent, they would present a truly sickening picture. There is not a town in the State—and I make the statement after acquaintance with the facts—where the house-sewage is properly removed from even a majority of the houses in the closely inhabited districts. If I am doubted in this assertion, let me ask you to step to the rear of any buildings in the older and closely built up portions of any city in this State, and make careful examination of your surroundings. One picture describes them all. Besides the complex forms of filth upon the surface, you will find wells, cesspools, privy vaults and rubbish heaps dotted about the scene in sickening proximity. Should you not be accustomed to crucial examinations of these details, and should you choose a warm, moist day for your investigations, you may not be ready to pursue them further. But assuming you to be less fortunate, you will acquaint yourself with the number and character of house connections with the sewer, should there be one in the street. It is hoped that you may see some house-drains torn up for repairs, and be able to examine the plumbing systems of the houses. Do this, and I am certain of your verdict. There is no need to confine your investigations to the poorer sections; wealth offers but slight barrier to sanitary recklessness. There are, in the towns of the entire State, only about a dozen sewerage systems, and several of these are in miserable condition. In its application therefore to the needs of the State, the subject in hand should receive general and comprehensive treatment. In analyzing the subject two main divisions appear. 1st. Districts, unprovided with sewers, where such lack can be wisely replaced by other appliances. 2d. Districts, unprovided with sewers, for which the suggestion of any other remedy than a properly equipped sewerage system would be idle.

Main attention will be given to the first of these divisions. For the purposes of the present paper, the methods employed for the removal or disposal of house-sewage may be grouped under heads as follows: 1st. Cesspools and privy vaults. 2d. The pail or tub system. 3d. Dry earth closets. 4th. The sub-irrigation system, for use at or near the site of the production of the wastes. 5th. Removal through sewers, usually by water carriage, with the varied forms of disposal after general collection. While all these processes do not serve the same purposes, they are designed for a common object and merit consideration.

No condemnation can be too sweeping to properly characterize the privy vault and cesspool as generally constructed. It is astonishing that their use should have been so long tolerated. Air, soil and water are contaminated by their putrefying contents. They are built close to dwellings, that removal of the wastes as they are produced may not be necessary; they are built with porous sides and bottom, that frequent removal of the putrefying mass may be avoided. The process is an outgrowth of laziness and stupid efforts at economy. It
has been continued mainly under the spur of the same incentives, until now custom has developed so stringent a law that it seems almost impossible to secure the abolition of this intolerable nuisance. When the character of the soil allows the liquids to freely soak away, cesspools and vaults are at a premium, and the fact is counted as an inducement to the locality. In the midst of a dense population this is scandalous. Recent light thrown upon the purification of sewage in the soil makes more apparent the evils of this process. It is known that the purification is largely the result of fermentation, or the life process of certain very minute germs or organisms which sweep away the filth with remarkable vigor and speed. It is further known that these organisms are not usually found more than 18 inches below the surface of the ground. The danger of pouring concentrated filth deep into the earth, as is done through the vault and cesspool system, thus becomes apparent. Up to the present time the active agitation of the sewerage question in any community has been ample evidence that the adjacent streams were laden to their limit with filth, or that the sub-soil was saturated with sewage to a point where the economical use of the cesspool had ceased. This compulsory decency does not deserve the name of sanitation.

The evident necessity for some improvement in the leaching vault has produced the modern privy, extensively used throughout England. In this later form the vault is impervious; it is intentionally contracted to a small space beneath the seat, in order that its contents may be frequently removed; some arrangement for scattering cheap deodorizing materials on the excreta is secured; the seat is hinged, in order that it may be raised, and a ventilating shaft is provided. As much as possible of the interior of the building should be made impervious.

A further perfection of this idea is obtained by replacing the vault with a movable tub or pail. This constitutes the "tub" or "pail" system. In both of these processes it is proposed to have the contents removed at frequent intervals, varying from three or four days to two weeks, by regular collectors in the service of the town. Kitchen wastes may be removed in this manner. In Rochdale and Birmingham, England, the "pail" system has reached its perfection. In Birmingham in particular it has reached enormous proportions; more than 40,000 pails, representing over 250,000 people, are collected weekly, and carried in specially constructed wagons to the dumping station. Pails empty and clean are put in their place. At the station the contents are placed in a tank, treated with sulphuric acid to fix the ammonia, dried and bagged for sale. The heat for drying is largely obtained by burning cinders and garbage collected in the town. This removal at Birmingham is in addition to a complete system of sewers, and one of the largest sewage purification works in the world. The net cost to the authorities at Rochdale (a city of 70,000) of removal by the "pail" system is less than ten cents a head per year. While it is not felt that this system would be tolerated in this country, in cities of large size, for general use, it is certain that its adoption in many towns of small size would be an immeasurable improvement over the privy-vault system, and in many cases would be actually economical if carried out with proper regulation. In towns not provided with sewers or public water-supply, the introduction of this system is strongly commended. Under these conditions it supplies the only weapon available to crush out the privy-vault system.

To clean and fill existing vaults and alter the buildings into tub or pail closets, would be easy and inexpensive. A system of distribution and collection is an essential; it may be readily established and managed. The results will amply repay the effort.

Another method of removal which has met with success under certain conditions, is the "dry earth closet." Urine and feces fall into the closet, and fine, dry earth is added after each deposit, either by the operation of a mechanism delivering a uniform quantity, or by hand. When proper earth is used the excretal matters are deodorized and decomposed. The compost may be removed at pleasure and used as manure. This system cannot secure wide popularity. It may be well in isolated cases, but could never be relied on for the work of a town filled with ignorant or careless persons. A proper supply of earth, dried and fine, prompt covering the deposit, removal of the compost, and ventilation of the closet, are among the requisites difficult of procurement. The "ash closet" and the "charcoal closet" are names which have been used to distinguish the absorbent material used; in design the closets are practically the same. These systems of "interceptions" as they are termed, are known in this country almost entirely through descriptions of European systems and by the personal investigations of specialists, yet it seems unnecessary to describe their details here. The disadvantages of all such systems may be summarized: 1st. They store excreta and dangerous wastes about the premises. 2d. They do not provide for large quantities of liquid.
3d. They are of some inconvenience and trouble. Their apparent advantages are: 1st. An incalculable improvement over the leaching vault. 2d. Economical removal of the wastes. 3d. They act as conservators of manurial elements. 4th. It is possible to thoroughly disinfect the alvine discharges in time of epidemic. Finally, the "tub" system can be strongly recommended for small towns during their periods of growth prior to the introduction of water-supply and sewerage. In this country we should probably not allow its development to such a size as in Birmingham for a population of a quarter of a million. The system must be controlled by the town authorities and the removal of filth made compulsory. It seems needless to continue the system after the introduction of a sewerage system, although it unquestionably intercepts much dangerous filth.

Upon the introduction of a public water-supply, the difficulties become more complex. A large and constant stream of water is distributed through the houses, is laden with filth, and an outlet for it must be provided. Under the present regime this outlet is arranged to be into the soil. With a more complete recognition of the evils of the cesspool and vault system this will cease. General concerted action for the removal of house-sewage will then be introduced.

A process, laterly well received and widely introduced in this State, aims at the solution of parts of the problem under these conditions. The "sub-irrigation" system has met with a success which merits attention. The origin and growth of this system is too well known to need comment here. Through small, open-jointed tiles, placed from eight inches to one foot below the surface of the ground, the house-sewage is flushed from an automatic siphon tank into which it runs as it is generated after interception of the solids in a settling tank. The elements which experience has shown to need close attention are: Proper adjustment of the grades to the capacity of the distributing pipes; care with the joints; need of wider drains in all but exceptional cases; complete interception of solids. Recent knowledge, previously referred to, of how purification takes place in the soil argues strongly against a depth of distributing pipes which has in some cases been adopted. They should not be more than one foot beneath the surface. The system should be limited in its proximity to houses and to lawns free from shade. Its use must of necessity be confined to the well-to-do classes, and preferably to those who are willing to give some attention to its working. The danger is, that it will be used by those who insist on decency about their homes, and that provision being made for their needs, less vital action will be taken to relieve the poorer and the more careless classes. This should not argue against the introduction of the system, but in favor of attention to quarters now neglected. It is suggested that where dry removal is not possible, the problem may be solved if town authorities will introduce and enforce a system of water-tight, ventilated vaults, with a proper pneumatic system of removal entirely under their control wherever the "sub-irrigation" system is not privately introduced. Regular and frequent cleansing of the vaults should be secured, and crucial inspection of their imperviousness would be necessary.* Processes for utilizing the contents of these vaults are available, and in many communities the financial returns might be made to largely repay the cost of removal. Such results are only possible through organized system. This seems difficult to secure, but communities must be taught its value and need.

Proper care is not exercised in removing house wastes, and the public is too prone to consider any system which is compulsory a burden not patiently to be borne. The removal of the waste products is just as important as provision of food.

For many communities in the State, now unprovided with systems for the removal of house-sewage, I believe that nothing which has as yet been presented can take the place of properly designed and equipped sewerage systems.

SEWERS.

Recent improvements in the design and construction of sewers, reduction in the price of materials, and the benefits of competition have so largely combined to produce economy and efficiency that it is questionable if there is any town in our State having a public water-supply that can afford to properly remove its house-sewage in any way but through a system of sewers intelligently designed and carefully constructed. The wide application of the small pipe system (to carry only house-sewage) has greatly reduced the magnitude of this problem.

* The disposition of wastes after they are collected at any one point is a matter for careful and competent advice for each case. The nature of the wastes, the demand for resulting products, the character of the neighborhood and surroundings, the expenditure possible and a host of complexities prevent any general deductions. Crematory processes have lately been so much simplified and perfected that they cannot be neglected when considering economy and cleanliness. They are particularly applicable as adjuncts of the systems of "interception."
As soon as any proper removal of wastes is demanded the economy and convenience of these small pipe systems will be more fully realized. It has been felt in many of our inland towns, having no outlet for sewage into large volumes of water, that the introduction of a sewerage system involved certain nuisance in disposing of the wastes. The troublesome questions of sewage disposal are largely exaggerated by casual thinkers; in fact, there is very general belief in many sections that purification of sewage on a large scale is chimerical. When the financial bubble—proposing to rapidly reap wealth from water-carried sewage—exploded in England several years ago a reversion of sentiment resulted which found expression in a motley literature. Those unfamiliar with the facts are apt to construe these expressions into sweeping condemnation of sewage purification processes. It should be remembered that the problems in England which have caused immense difficulty and discussion are on scales far out of proportion to the needs of our State. There is no town in the State which need hesitate to introduce a “separate” system of sewers because of difficult disposal. Knowledge of processes satisfactory under the most crucial tests will guide in solutions here. Processes for utilizing dilute manurial agents are really in a fair state of perfection.

In conclusion, it must be realized that public health is not a matter to be trifled with by reckless individuals who are content to jeopardize their own existences in the midst of disease-fostering conditions. There is need for a centralizing controlling power, which is interested not only in the sanitation of the wealthier and cleaner sections of the town, where proper sanitary conditions are perhaps most liable to exist, but also in that of the hovels and tenements. The weakest link of a chain measures its strength. The vilest section of a town may be the measure of its immunity from disease or contagion. We have grown to recognize the advantage of fire districts in our cities; to admit the need of building regulations and items in the control of the food-supply and some few principles of domestic sanitation. The next step should be in the direction of systematic and compulsory removal of dangerous filth from the vicinity of dwellings. Present regulations are entirely inadequate. In England, under the Public Health Act of 1875, every local authority may, and when required by order of the Local Government Board shall, themselves undertake or contract for the removal of house refuse from the premises; the cleansing of earth closets, privies and cesspools for the whole or any part of their district. We have no such central authority. It is a question if this is not a weakness in our form of government; but in its absence the minds which mould and form public opinion should endeavor to lead in practical efforts of reform. We can proceed no faster in these matters than public opinion will sustain. Anything which increases the demand for honest and intelligent protection and preservation of health merits our encouragement and support. If we then run counter to prejudice and present practice, we must meet the issue squarely and manfully. Reforms are not readily secured, but we need not despair when life and health are the rewards.
THE WORK OF THE PLUMBER, AND THE
DISPOSAL OF SEWAGE.

BY J. J. POWERS, SANITARY PLUMBER, BROOKLYN.

I have been invited to speak on the work of the plumber, and the
disposal of sewage. I shall be as brief and practical in my statements
as possible, and trust you may find them of interest.

My connection with the plumbing trade began some twenty years
ago, at a period when the favorite metal for soil and waste pipes was
lead; these pipes were usually supported by straps of sheet-lead
soldered to the pipe on either side and secured to the walls with
screws or hooks. The vertical soil and waste pipes in buildings were
considered the proper place to display the skill and taste of the
mechanic, and the work on them was generally good and well-jointed.
The traps used were all made by hand, being beaten out of sheet-lead
in two pieces, and soldered together on the sides. The manufacture
of these traps constituted a large part of the plumber’s shop-work in
the winter months. Age and experience, however, developed the facts
that no matter how well the lead pipes were supported their weight
“sagged” them, and, the fastenings being immovable, the result
was a break at the upper or lower side of each support, and the traps
and bends were usually corroded through at the edge of the soldered
seam which united the two sections. Added to these unfavorable
experiences was the fact that the progressive intellect of man had dis-
covered how to make very thin lead pipes. The old lead pipes were
expensive and troublesome to repair, and it pained the plumbers to
have to make such large charges for repairs to their customers, so
they sought for a substitute, which they found in iron. Unfortunately,
they still retained the notion that soil and waste pipes must be
very thin; and as the germ theory had not yet been introduced into
the plumbing business, the necessity for air-tight joints between the
lead branches and the iron hubs was not generally realized nor acted
upon. The horizontal house sewers were generally constructed of glazed sewer-pipes, which were laid beneath the cellar floors by laboring men who usually paid more attention to grade and alignment than to perfect jointing.

In the cheaper class of houses, the water-closet traps on the second floors were considered sufficient seal for all the waste pipes leading to the various basins; this was a serious mistake, because, under this arrangement, there were frequently from 30 to 60 feet of untrapped waste pipe, and from their filthy, gelatinous linings gases of decomposition escaped into the sleeping-rooms. But as the development and escape of gases were not at that time considered by the architect who designed, or the plumber who constructed—the plumbing of houses in that period was not of a nature to fulfill the requirements for the prevention and exclusion of sewer gases from polluting the air within the dwelling. Plumbers never introduced vent pipes except in cases where they had reason to expect an "air bind," and only did it then to facilitate the flow of water. In brief, the plumber's work was considered successfully accomplished when the water freely ran from the supply pipes, and the waste waters were quickly carried off through the discharge channels.

But these haleyan days soon came to an end; the rapid growth of the cities and consequent impaction of people, was followed by a rapid increase in the number of cases of infectious disease. The steady, persevering and critical researches and investigations made by our self-sacrificing and public-spirited friends and benefactors, the medical practitioners of these communities, eventually revealed the fact that some connection existed between these diseases and defects in the plumbers' work. This was the first step towards improvement, and to physicians are the public indebted for the advance in experimentation and investigation. After this, rapidly, followed the evolution of the sewer-gas theory, which resulted in forcing upon the plumbers and sanitary engineers many microbes, to be taken care of in some manner least prejudicial to the public health. As the plumber's knowledge of animalele was comparatively limited, owing to the fact that up to this period he had not been obliged to study nor be responsible for any microbe more diminutive than the average plumber's helper, his position was very unpleasant, particularly so as these microbes, when inhaled by the plumber, utterly refused to develop disease within his germ-proof internal organs; consequently he was thereby prevented from forming any judgment based on practical experience, for plumbers seem to thrive on sewer gas physically, as well as financially.

The results of the first efforts in ventilation, in a great number of cases, intensified instead of correcting the evils, because sheet-iron pipe was used to extend the soil and waste pipes to the roofs. The waste pipes of basins were trapped at the basin end as well as in the water-closet trap. Ventilating pipes were carried into chimneys, yard-vaults were abandoned and water-closets substituted in cellars, all of which tended to make bad worse. But as soon as the plumbers commenced to understand the fact that their business had assumed a professional character, requiring from them a certain amount of scientific knowledge, it must be admitted that they made strenuous efforts to meet the requirements of the physicians, and have certainly made marvelous progress, considering the fact that the knowledge required had to be attained immediately, yet was of a character difficult to comprehend without long study, combining, as it does, elements of chemistry and hydraulics.

The improvements in plumbing within the last ten years are simply phenomenal. The bath-rooms and water-closets are as clean and odorless as the parlors, when good fixtures are used and properly set. The great competition has brought the price of first-class fixtures of all kinds down so low that there is no excuse for any property-owner not to provide his houses with suitable and cleanly fixtures. But there is one improvement that is very desirable and inexpensive that should be adopted in every new piece-work or alteration. When the main lines of soil and waste pipes are in, and the lead branches carried to beneath the location of the various fixtures, the ends should be stopped and the whole system filled with water to the roof to prove the reliability and tightness of the work. In all cases extra heavy iron pipe and fittings should be used and lead pipes for branches of corresponding thickness.

The rules for the arrangement of soil and waste pipes, and the proper trapping thereof, are so well laid down in the printed forms of the Brooklyn Board of Health, and so familiar, that I do not think it necessary to enlarge upon that subject.

The question of trapping I will illustrate by an experiment, showing you the merits of the two forms of traps commonly used. The siphon action is so apparent and well known that it is not necessary to dilate upon it.
In regard to the question of final disposal of human excreta and wastes, the plumber is continually called upon to decide how to dispose of the sewage from isolated mansions. Until within a comparatively recent period, the method of disposal was by discharge into deep cesspools built of stone and brick, laid up loose-jointed so as to permit of soakage into the earth. This was the accepted and favorite method of disposal on many homesteads during the past century or more, and for convenience the privy, cesspool and well were located contiguous to the house and close together. In course of time, the earth between the cesspools and wells became saturated and the sewage found ready means of inflow into the well, where it was finally disposed of by being used for domestic purposes and drank by the family, or their guests. This method of disposal had so many serious objections that in deference to the prejudice of the guests and their physicians it was abandoned, although it was not easy to convince the people who had used the wells for many years that the method was not specially advantageous.

Now, the provision of cesspools, even if water-tight and ventilated, is universally condemned, except as a temporary expedient while awaiting the construction of sewers. The disposal by intermittent discharge into irrigation tile is always preferable, but requires considerable land. The question is rapidly becoming very serious for inland towns, and great progress will necessarily be made in the next few years.

I believe that all the sewage which is discharged into the earth or streams should be chemically treated before discharge, so as to minimize the absorptive work in the soil. In large plants the chief object to be attained is a minimum of offense at the place of precipitation and treatment and as complete a clarification of the fluids as possible. To fully illustrate my views, I will demonstrate by two experiments, showing the two systems I have often used for the chemical treatment of sewage by per chlorid of iron and chlorine.

Both systems are in successful operation and I am satisfied with the result.

In conclusion, permit me to say, that the plumber of the future should combine and possess the professional education of sanitary engineering with the mechanical knowledge of his trade to do justice to a business which is fraught with so much interest to the welfare of the community.

I believe that the plumber is in a more receptive condition for this
THE PHYSICAL LAWS OF PIPES AND FIXTURES
AND THEIR CONTENTS.

BY PROF. C. F. BRACKETT, LL.D., PRINCETON.

Many of the facts in science which we are accustomed to put into daily operation have been known from early antiquity. None have been more clearly perceived or more undisputed than that law in hydrostatics which asserts that when we connect different vessels together by means of pipes, the liquids which they contain will stand at the same level in them all, provided the liquids have the same density. Suppose then, that we have a series of vessels connected by means of pipes, and that water were poured into one of the vessels, of course we shall find that the water rises to the same height in them all. If one of the vessels be replaced by a pipe or tube of very small diameter, we find that the water stands at a greater altitude in this than in the other vessels. If, however, the liquid under trial be mercury and the small tube be of glass or of any material which the mercury does not wet, then the liquid mercury stands at a lower level than in the connected vessels. It thus appears that it is impossible to make a full discussion of the simplest laws which regulate the height of liquids in connected vessels without taking into account the nature of the liquids themselves. In the first place let us consider the nature of water. Inquiries have been instituted in other countries as well as in our own to detect, if possible, the character of the surface action which is always present at the junction of the liquid surface with some other surface such as that of the containing vessel or the air. Dr. Thomas Young was the first who consistently developed the doctrine that the surface of water, and liquids generally, is covered with a stretched membrane or film. I here describe a very striking experiment which I think will convince any one of the truth of this assumption as a physical fact. Provide a glass of perfectly clean water, some ordinary paper and a little oil. Also provide a pair of
pincers. Immerse the paper completely so that it shall be thoroughly wetted and wholly below the surface of the water. Place one drop of the oil on the surface of the water. It will be observed to form itself into a globule more or less perfect, but somewhat flattened. This after oscillating about a center of motion, will come to rest. Now insert the pincers and draw the paper slowly out of the water so as not to touch the oil globule. The moment the paper emerges, the drop of oil is deformed. It no longer retains its semi-globular shape, but as the paper is more and more drawn out, the shape of the oil is altered. If, now the paper be pushed back under the water the oil reverts to its original form.

The explanation is very simple if we admit that the surface of the water as well as the surface of the oil is in fact a stretched film. In this case it is easy to see that the circumference of the oil globule is everywhere invested with the film of water which forms its surface, and when the paper is drawn out there is a tension put upon this film which pulls the oil out of its proper form. It may be remarked in passing, that the nearly globular form of the oil is due to the tension of the film which constitutes its surface. The reason for the existence of the film at the surface of any liquid is found in the fact that the molecules at the surface are not subject to the same attractions on every side as are those which lie at points distant from the surface, that is, beneath it.

Now the fact that there is a film at the surface of every liquid must not be forgotten when we come to deal with the theory of the behavior of liquids in pipes. If a plate of glass be plunged vertically into water it is found that the water does not come sharply and squarely up to the surface of the glass, but comes in contact with it at an angle differing from a right angle, in general very acute and depending on several conditions, such as the cleanliness of the glass, the purity of the water, the temperature, etc. If the glass plate be in the horizontal position, and a drop of water be placed on it, the drop will spread out in a thin layer, which, if the plate be perfectly clean, may entirely cover it. On the other hand, if we place some mercury on the glass it will gather itself up into a flattened globule.

Exactly the same kind of action occurs at the surface of these liquids and that of tubes with which they may be in contact. It is not difficult to exhibit this action in a striking way by means of a small glass tube and water. Suppose the tube have an internal diameter of one-eighth of an inch. Introduce a short column of water and then allow a little air to enter to be followed by more water and air in small quantities, at a time respectively, till the tube is occupied with alternating sections of water and air. Now, if the attempt be made to blow the whole of the contents of the tube out so as to leave the tube empty, it will be found to be very difficult, if not impossible, to do so. Here, then, we have a very considerable resistance offered to the passage of liquid through the tube. This force, or better, this opposition though much less in tubes of larger diameter, may not be neglected in them, when such a condition as is under consideration prevails.

Let us consider a system of pipes, of whatever kind, intended to convey water into our dwellings. Whatever principles we find to be applicable to these will also be applicable to the pipes which convey away the water, after it has served its use, provided the pipes are alike in their general structure and character.

Let the end of this short tube, which I hold in my hand, represent the section of a pipe. Suppose that in some way the section has been diminished. This will be done if the pipe be compressed, as will be likely to occur in bending it. The carrying capacity of the tube will be diminished. Now a question of great importance is at once presented as regards the results which flow from this constriction when water is made to flow through the pipe with a constant velocity. It is, I suppose, would seem probable to most of us, considering the problem for the first time, that there would be greater pressure at the point of constriction than elsewhere. If, in order to test the matter, a long tube be taken, having a constriction at the middle, and furnished with small tubes, inserted laterally, one at the constriction and others on either side of it, and made to discharge water under a head, it will be found that there is less internal pressure at the point of constriction than elsewhere, as will be clearly shown by the heights at which the water will stand in the several small inserted tubes. If we take a case exactly the converse of this—that is, one in which the tube has an enlargement instead of a constriction—it will be found that there is greater pressure at the point of enlargement than elsewhere.

Thus, we find that there is increased pressure in consequence of enlargement and diminished pressure in consequence of constriction. The bearing of these principles on the behavior of pipes in certain of our sanitary arrangements is obvious, and I need not dwell upon it.
Let us now consider a pipe, having a perfectly uniform, smooth bore, with reference to that surface action of liquids spoken of before, in virtue of which the surface becomes a stretched film. When the tube is filled with water there is an adhesion between the surface of the water and the walls of the tube. The result is that there is an attached lining of water which is not dislodged, even when the water flows at a very considerable velocity. This layer lags behind, therefore, while the next one lags less and so on. Thus, the water flows with greater velocity in the central portions of the tube in consequence.

In our sanitary arrangements we are accustomed to employ pipes in which the phenomenon we have just been considering is of decided importance. If, in addition, the caliber of the pipe in a given case be wanting in uniformity of course the differences in pressure before discussed will be present, and there will be eddies set up which will more or less obstruct the flow of the water. If there be also present air of gas or any kind, this will constitute another complication. Suppose we knew the value of each one of these factors, and that we had effected a perfectly harmonious adjustment of them so as to secure the actual service we desire in a particular case, and that we had made our household arrangements on that basis. Is there any assurance that disappointment will not follow? Not at all. The surfaces of the pipes will change in character from rust and deposits of various kinds.

Before taking up the conditions on which another practical matter depends, I wish to describe an experiment of great interest, and which, also, will help to make the matter in view clearer. We can make water to constitute its own tube for conveyance from one vessel to another. Prepare two buckets by inserting in the side of each of them a small circular tube of very short length. Place the two buckets so that the tubes are opposite each other, and so that their axes coincide in the same straight line. If now one of the buckets be filled with water the jet which issues from it will pass directly into the tube of the other, and so the water is passed from one bucket into the other without the aid of a solid pipe—the film of water which invests the stream being the only tube needed. If water be poured from a pitcher in a stream it is observed that the diameter of the stream is greater as it leaves the pitcher than it is at any point lower down. But it is evident that just as much water is passing across a cross section of the stream at one point as at another, otherwise there would be an accumulation of water at the points where the smaller portions were passing. It is clear that the increased velocity of the stream at the lower points makes up for the diminished size.

Now suppose a tube be placed vertically and water be kept flowing through it. On account of the capillary adhesion between the water and the walls of the tube, the water tends to fill the tube at every point—at the lower end as well as at the upper. By the increase in velocity, the column of water in the tube tends to become smaller in section as it falls. The only resultant possible in the circumstances is the decrease of pressure in the tube at these points lower than the surface of the water which supplies the tube. In other words, there is a tendency to form a vacuum. Complete proof of this conclusion will be obtained if an opening be made through the side of the tube. Instead of the water flowing out, it will be found that the air is forcibly drawn in through the opening. Such an arrangement is often used for an air-pump.

If a clean, sharp opening be made through the thin wall of a vessel containing water, and so supplied as to keep its surface at the same height notwithstanding the flow through the side, and if a vessel be set to receive the water which flows out, we may ascertain the amount which flows out in a given time. Let this be done, and call the amount unity. Now insert a short tube—of length equal to its diameter—the diameter being equal to that of the experimental opening just described, and ascertain how much water flows out of the vessel in the same time as was employed in the previous experiment. It will be found to be much in excess of that which ran out in that experiment. In other words, when the short pipe is used there is a greater flow than where there is an apparent unobstructed flow. These and other familiar facts, I suppose, are known to you all. They are cited to remind us that we have them among other factors to deal with in the sanitary arrangements which we are called upon to construct, and which employ pipes for the conveyance of liquids. When all the conditions are adequately known, there is a calculable duty which may be determined mathematically. But as already seen, the system which we have at any given time is not the system which we shall have at some subsequent time, especially in the case of pipes destined to
receive the waste products of the household. As to the disturbances
due to the introduction of air, they may, under certain circumstances,
be avoided. If pipes be everywhere so laid that there are no upward
curvatures to hold the air which is certain to be introduced with
the water, no trouble from this source need be apprehended. Circum-
stances, however, may arise in which the case will be quite otherwise.

If the object be simply to bring clean water into the dwelling, there
are a number of inconveniences which may be tolerated, such as imper-
fect joints, faulty stop-cocks, etc., and no serious injury need result.
But the case is otherwise when the water has passed the sink or closet
and entered the system of pipes which conduct it to its final destina-
tion—the sewer. In this region, all that has been said in relation to
the character of the liquids, to the diameter of the pipes, etc., will
need to be studiously considered. In order to appreciate the changed
action which may occur when water which is not clean is to be dealt
with, consider the experiment now briefly to be described. Let there
be a conical tube of about an inch in length, and, preferably, let it be
of glass having its end diameters, say, about an eighth and a six-
teenth of an inch respectively. If this tube be filled with water, the
water will be retained by capillary action, and we shall note that the
surfaces of the water are concave at the extremities of the tube. If
the tube be held in an inclined position, the water will remain in
equilibrium with no tendency to fall out of it. While it is thus in
equilibrium, if one end or the tube be touched with an oily substance,
the equilibrium is at once destroyed, and the water falls out. The
contamination of the water with an oily matter has acted on its invest-
ing film very much as a knife would act to cut an ordinary stretched
membrane.

The film which covers the free surface of water is a very tough
one—much stronger than the well-known soap films with which we
have all played, I suppose, in childhood. With the soap solution
properly prepared very large bubbles may be blown, but the same is
not true of water. How, then, is it that the film of the water is of
greater strength than that of the soap solution? It was shown by
Professor Henry that the tensile strain required to pull a given section
of water apart is about the same as would be required to pull apart
an equal section of ice. This may help us to understand how great
is the force required to separate a layer of water from another layer
when there is no sliding motion allowed to the molecules.

There is another property of water which causes it to behave, when
conveyed in pipes, like a solid. That is its incompressibility. When
a long column of water is moving in a pipe with a high velocity,
and is suddenly arrested by shutting a valve, the effect is at once manifest
by the sudden blow which is given, and which may even be sufficient
to rupture the pipe.

There is considerable amount of air dissolved in water under ordi-

nary conditions, the amount, other things being equal, depending on
the pressure to which the air and water are subjected. Now it is
obvious that in the case where a pipe is carried upward to a consider-
able height and then descends, there is less pressure at the higher
parts of the pipe than at the lower parts. Hence it happens that
some of the air which under the greater pressure remained in a state
of solution is set free and so accumulates in the upper parts of the
pipe, where unless the effective head is sufficient to sweep the air along
with the water it will accumulate and form an obstruction to the fur-
ther flow.

If we consider distinctively the condition of the waste pipes which
convey the refuse from our dwellings, it is evident that there must
result from the mixture of matters passing into them ever varying
complications, so that it will be impossible to say at any given mo-
ment whether they are in a condition to discharge their proper func-
tions or not.

Briefly restating a few of the matters touched upon, we have cap-
illary phenomena in our pipes, provided the diameter of any of them
be small enough. We have, in vertical pipes, diminished internal
pressure resulting from the adhesion of the water to the walls of the
pipes together with the increasing velocity of the descending liquid;
and we have unknown complications arising from the mixed matters
which contaminate the water passing through our waste pipes.

In practical plumbing the question arises in respect to the caliber
of the trap which must be introduced to prevent the ingress of nox-
i ous gases. Should the trap be of larger, or of smaller or of equal bore
with the pipe on either side of it? So far as the effect of an enlarge-
ment or that of a constriction is concerned, we have already said
enough, and if there were no other complication there would be no
great difficulty in deciding the question. But we must remember
that the effect of the trap is to change the direction of the flowing
water suddenly, and that this cannot be done without setting up corresponding disturbances in the flow. The resistance offered to the passage of the liquid, and the consequent retardation, will be as the square of the number representing the velocity of the liquid. Again, if there be two tubes or two sections of the same tube which differ in diameter, the relative amounts of liquid which they can convey, other things being equal, will be as the squares of their diameters respectively. Increasing the diameter of the pipe increases the carrying capacity, while increasing the velocity of the flow increases the resistance.

I only intended to discuss a few matters suggested by the title which is entered against my name without attempting anything like a logical treatment of them, as this would manifestly be impossible in the time allotted. I may say, I think, in conclusion, that it is utterly impossible, in the present condition of sanitary science, to lay down any rules of practice which shall hold for all occasions. The sanitary engineer must know not merely these facts which we have hastily presented, but a large number also to which I have not adverted. He must not only know them but he must keep them constantly in mind and deal with them just as the physician deals with the facts he finds at the bedside. Would it be proper, on seeing a man who was ill, to prescribe without inquiring into the cause of his difficulty? The proper course is to consider every circumstance which can cast any light on the present condition of the patient—his habits, his constitution, the influences to which he has been exposed, in short, every factor entering into the case must be taken into account and carefully discussed till the seat of the mischief is found. Exactly so is it with the sanitary engineer who goes to make an inspection of a house or other building in which modern conveniences are to be found. He has to inquire with respect to the cesspool or sewer. How is the building situated with reference to the one or the other, as the case may be? How many feet of pipe are employed? Is the pipe straight or does it contain angles? What is the pressure from this or that closet? To make the matter short, what are the symptoms which, altogether, must be dealt with in this case? When mischief has occurred it is not enough to prescribe a trap here or to say that there should not be a trap there. The thing to be determined is not simply whether there should or should not be a trap. If the question be settled affirmatively, what kind of a trap should it be? How should it be ventilated? These and similar questions must be answered.

In every internal arrangement, let the sanitary engineer and the plumber—if we could make him, which I suppose is hopeless—at any rate, let the householder take pains to inform himself respecting the general principles which must be involved in any plan, and then, of alternative plans, choose that which has the least chance of evil. Secondly, always secondly, select with reference to economy in construction, for true economy lies on the side of safety.
ILLUMINATING-GAS; ITS HISTORY AND ITS DANGERS.

BY JOSEPH H. RAYMOND, M.D., PROFESSOR OF PHYSIOLOGY AND SANITARY SCIENCE, LONG ISLAND COLLEGE HOSPITAL, BROOKLYN, N. Y.

It will be our purpose in this paper to give a brief history of illuminating-gas, to describe the processes formerly and now in use in its manufacture, and the different fixtures and other appliances generally employed in gas-lighting, also to point out the principal annoyances and dangers connected with this method of illumination, and the means of overcoming and avoiding them.

HISTORY OF ILLUMINATING-GAS.

History will be searched in vain for an account of the introduction of illuminating-gas. Hidden in the earth are accumulations of hydrocarbons from which gases have been naturally evolved for ages. The miner, plying his daily vocation with pick in hand, breaks into the seams of coal and a gas pours out which has been confined perhaps for centuries. This is his deadly enemy, the fire-damp, a gas which is formed in the production of coal from vegetable matter. It is known to chemists as methane, marsh-gas, or light carburetted hydrogen, and is one of the constituents of the illuminating-gas in daily use. It is very combustible, but, like hydrogen, produces but little light, though giving an intense heat. It is this gas which, when mixed with air, forms the explosive compound so fatal to the miner, and also to the householder who incautiously carries a naked light into the cellar where gas has escaped from some leaking pipe. It is composed of one atom of carbon and four of hydrogen, its chemical formula being CH₄. In various parts of the world there are gas-springs or wells from which natural gas escapes, being set free from some accumulated hydro-
carbons deep down in the earth, and it is from such sources that the so-called "eternal fires" have their origin. One of these exists at Baku, near the Caspian sea. But such natural emanations of gas are sometimes of more practical use than the furnishing of the deadly fire-damp to the miner, or the eternal fire to the superstitious Asiatic. The Chinese, justly renowned for their wonderful adaptive genius, have for centuries employed natural gas for the evaporation of the brine in their salt-mines near Pekin, conveying it long distances in bamboo tubes. In more recent times the village of Fredonia, N. Y., has been lighted by gas which comes from a bituminous limestone of that region; the gas being a mixture of marsh-gas, \(\text{CH}_4 \), and hydride of ethyl, \(\text{C}_2\text{H}_5 \). And still more recently natural gas has been conveyed for miles and utilized for lighting and heating, as in Pittsburgh and Buffalo. In England a natural gas, consisting mainly of marsh-gas, has been known to come from peat-bogs. These natural gases are emanations from different hydro-carbons, and will therefore differ in their composition. Thus the gas from the coal mines is marsh-gas, that used in Fredonia, marsh-gas, while that which flowed from a well sunk at West Bloomfield, Ontario county, N. Y., in the year 1865, while searching for petroleum, was composed of marsh-gas, carbonic acid, nitrogen, hydrogen and illuminating hydro-carbons.

What nature has thus done for some communities by storing up hydro-carbons in the earth, man must do for himself in those localities where, in furnishing the equipment for the maintenance of civilized life, nature has not supplied the materials out of which illuminating-gas can be manufactured; that is to say, man must transport the hydro-carbons from the place of their formation to the localities where they are, by artificial processes, to be transformed into gas for the purposes of heat and light.

As is the case with most valuable discoveries, the credit of introducing artificially prepared illuminating-gas into practical use does not appear to belong to any one individual, though to William Murdoch, a Scotchman, more credit is probably due than to any other one man. Not far from the year 1700 the Rev. John Clayton, Dean of Kildare, observed that the water of a ditch in Wigan, in Lancashire, would burn like brandy, generating heat enough to boil an egg. He had the ditch dammed and the water removed. In the bottom an excavation was made, and after digging a foot or two in the earth a bed of shelly coal was reached. The gas which came up from this bed

ignited when a flame was brought in contact with it. He put some of this coal in a retort, which he heated in a fire; the gas which resulted he found could be ignited, and even kept in a bladder and burned at pleasure. This may, in reality, be regarded as the discovery of coal-gas, and the Rev. John Clayton as its discoverer; but he seems never to have made any other use of it than to amuse himself and his friends.

In 1787 Lord Dunonald, while making coal-tar, obtained a gas with which he lighted Culross Abbey, in Scotland. This is the first instance which we have been able to find where an artificial gas was employed for the lighting of a structure. In 1786 Dr. Rickel, Professor of Chemistry, at Würzburg, lighted his laboratory with gas made by the dry distillation of bones.

In 1792, Murdoch lighted his house and office, at Redruth, Cornwall, with coal-gas which he made himself. He also put a light in a steam-carriage in which he traveled from his home to his mines. Subsequently he removed to Old Cumnock, in Ayrshire, Scotland, and here he also employed coal-gas as an illuminant. In the year 1798, being then employed by the firm of Boulton, Watt & Co., at Soho, he constructed gas-works and lighted their factories with gas. This new method of illumination, to the exclusion of others, was soon extended into neighboring factories.

But little attention seems to have been paid to this innovation, and it was not till 1802 that there was any public exhibition made of it. Then, in the celebration which occurred at the signing of the treaty of Amiens, Murdoch exhibited two copper vases at his works, with two immense flames of coal-gas issuing therefrom. Pall Mall, London, was the first street lighted with gas; this was in 1807. The first gas company was chartered in London in 1812, under the name of "The London and Westminster Chartered Gas Light and Coke Company." In 1813 Westminster Bridge was lighted by gas, and in 1815 this method of illumination was introduced into Guildhall. The difficulties which this company had to encounter in their efforts to introduce gas into general use were such as have presented themselves time and time again to the advocates of public improvements which are novel. The objections which they were obliged to meet came not only from the general public, which could not be expected to do other than oppose, but from men as educated and scientific as that great chemist, Sir Humphrey Davy. He regarded the idea of lighting London with gas as so supremely ridiculous that he contemptuously inquired of the
engineer whether it was intended to take the dome of St. Paul's for a gas-holder. The engineer answered that the day would doubtless come when gas-holders would be as large. This prediction has been more than verified; the diameter of the dome of St. Paul is but 145 feet, while there is at least one gas-holder in the world with a diameter of not less than 200 feet, and one now being built in London with a diameter of 250 feet. For two years the company supplied gas to shops and houses without cost, in order to persuade people that it was both safe and useful. It was, however, for a long time looked upon with great suspicion. When the government at last consented to permit its introduction into the House of Commons, the architect required that the pipes be placed four or five inches from the wall, so that the heat would not set fire to the buildings. A commission appointed by the government to investigate the works of the company, recommended that large gas-holders should not be permitted, for fear of explosion, and that the holders should be enclosed in strongly built structures, so that if an explosion should occur surrounding buildings would not be injured.

One of the great practical difficulties was to provide suitable pipes for the conveyance of the gas from the works to the consumers. Patents were issued for pipes of wood and paper; gun barrels were screwed together, and at last pipes were made of wrought-iron. By the year 1816 popular and governmental prejudice had so far diminished as to permit of the general introduction of gas into the streets of London, and into most of the shops and public buildings, but it was a long time before it was generally admitted into private houses.

The honor of first making gas in the United States is attributed to David Melville, of Newport, R. I., who in 1807 lighted his residence and the street in which he lived. Ten years subsequently he lighted Beaver-Tail lighthouse with it. For general use gas was first successfully made and used in Baltimore, in 1821, in Boston in 1822 and in New York in 1823. In this latter year the New York Gas Light Company was started, but was not successfully at work until 1827, making their gas from oil and resin until 1849. It is estimated that there are at the present time more than five hundred gas companies in the United States, the capital of which mounts up into the tens of millions, that in New York alone being $45,000,000.

ILLUMINATING-GAS.

PROCESSES OF MANUFACTURE OF ILLUMINATING-GAS.

We come now to the consideration of the different processes by which illuminating-gas is made, and as coal-gas was the first made, shall first describe concisely its manufacture. Inasmuch as the production of gas from coal in quantities necessary for the lighting of a town or a city is nothing more than the reproduction on a large scale of what takes place in a burning candle, we shall, before taking up the manufacture of gas, describe the changes which take place in a candle when burning, hoping thereby to simplify and make more intelligible the more complicated commercial processes.

Fig. 1. Candle-flame.

In the production of light by combustion, three chemical elements are involved; these are hydrogen, carbon and oxygen. The process is briefly a chemical one, in which hydrogen and carbon unite with oxygen, or in other words it is oxidation. The wax of the candle is composed of hydrogen and carbon. When the wax is heated by the flame it melts at the part immediately surrounding the wick, and in its melted condition is drawn up into the wick by capillary attraction. The end of the wick being in the center of the flame no oxygen has access to the oil which has thus been drawn up, but it is here exposed
to a great heat, and is thus subjected to a process of distillation in all essentials similar to that which occurs in the retorts used in making coal-gas, hereafter to be described. As a result of this distillation the hydrogen of the oil or melted wax is set free and burns, producing but little light, though an intense heat. This is a process of oxidation, of which the product is water. If a tube is passed into the interior of the flame where the gas is which is formed by this distillation, the gas may be conducted by a tube out of the flame, and burned. (See Fig. 1.) Or it may by the same means be led to a receiver and there stored to be burned whenever desired. The heat caused by the burning of the hydrogen raises the carbon to a white heat, and the luminosity thus produced constitutes the flame. Oxidation again occurs in this incandescence of the carbon particles, and carbonic acid gas is the result. In the candle of our fathers, the wick became so long, as the tallow was consumed, that the temperature of the flame became lowered, and the carbon not being thoroughly oxidized was given off as free carbon, smoke and a diminution of the illuminating power being the results. In order to prevent this the snuffers were employed. In the modern candle the wick is so constructed that as the candle is consumed the wick twists to one side and is burned at its end, never remaining sufficiently long either to impair the flame or to cause it to smoke; it therefore requires no snuffers. In the production of the candle-flame hydrogen and carbon are oxidized, and water and carbonic acid are produced. Until the electric light was introduced it might be truly said that the production of light for illuminating purposes was in all cases an oxidation of hydrogen and carbon. Any hydrogen-carbon may be employed for this purpose, but practically that one is selected which will produce the best light at the least expense. In most countries coal has most fully met these requirements, and hence, the gas obtained from coal has been the illuminant most generally employed; although, as will be seen, various oils and other compounds containing hydrogen and carbon have been utilized in the production of illuminating-gas.

As has already been said, all substances which contain hydrogen and carbon will, when heated to the point of destructive distillation, give off gases which are inflammable. Although the number of such substances in nature is without limit, still there are not many which can practically be used for this purpose. Coal, petroleum, resin, wood, peat and oils may be thus utilized, but as a rule the ones selected are, for many reasons, either coal or petroleum, or a combination of the two.

There are three varieties of mineral coal—these are anthracite, bituminous and lignite or brown coal. Anthracite is poorly adapted to the production of illuminating-gas, for the reason that in the very process of its formation much of the gases have been driven off. When, therefore, this variety of coal is heated in retorts, it can yield but little more. And yet that it still contains enough to do much harm is evident from the fact that death sometimes occurs from the inhalation of the gas which is produced from anthracite coal, in the ordinary coal-stoves, when the combustion is imperfect. There is also no doubt that this gas, that is carbonic oxide, is injurious to health, even though it may not be present in sufficient quantity to produce a fatal result in those who inhale it. It is a common practice to put fresh coal on the furnace fire just before the occupants of the house retire for the night, and to close the damper in the pipe that goes to the chimney to such an extent that the pipe does not carry off the injurious gas which is generated. As a consequence of this the gas passes from within, out to the hot-air chamber, and saturates the air which is to heat the sleeping-rooms. Coal should never be put in furnaces or stoves the last thing at night, but sufficient time should be given for its injurious gases to escape through the chimney before the dampers are closed.

Anthracite coal is regarded as a natural coke, from which the volatile constituents have been expelled. Of bituminous coal there are three varieties—the caking, the non-caking and the cannel. The latter of these furnishes the richest gas, and hence where the cannel coal is the most abundant, as in Scotland and Lancashire, there the gas is the best. As a matter of fact, however, the caking coals are commonly used in the manufacture of illuminating-gas, being the most abundant and therefore the cheapest. They receive their name from the fact that by fusion they become a compact cake or coke, and this is of great value as a fuel. In order to make the gas from these caking coals still richer a certain proportion of cannel coal or other enriching material is added. The difference in the composition of these two coals is shown in the following analysis:

<table>
<thead>
<tr>
<th></th>
<th>Caking Coal</th>
<th>Cannel Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>87.75</td>
<td>75.25</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5.28</td>
<td>5.50</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.70</td>
<td>1.61</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3.50</td>
<td>13.83</td>
</tr>
<tr>
<td>Ash</td>
<td>1.89</td>
<td>2.81</td>
</tr>
</tbody>
</table>
In both of these coals iron pyrites (FeS₂) is found, the sulphur of which is a very objectionable substance, a portion being retained in the coke, while the rest is found in the gas, the water and the tar, and must be removed before the gas can with safety be delivered to the consumers. Nova Scotia coals contain from 3 to 5 per cent. of sulphur, those from Red Bank, Pa., 0.89, and from Westmoreland, Pa., 1.50 per cent.

If small pieces of bituminous coal are placed in the bowl of a common tobacco clay pipe, and the bowl tightly closed by clay and then placed in the fire, black smoke will soon be seen issuing from the stem. In a few moments gas will take the place of the smoke, and will burn if a lighted match be applied to it, and continue to burn for some time, while a tarry liquid oozes from the stem. After a while the flame will die out, and in the bowl will be found a residue, which is coke. This is practically a repetition of the experiment performed by the Rev. John Clayton about 1690, and represents essentially the present method of producing illuminating-gas from coal. In place of the clay pipe, clay retorts are used to hold the coal, and these are tightly closed to exclude the air. The gas, instead of being burned directly, is subjected to certain processes to remove the impurities which it contains, and stored in gas-holders, to be burned when needed. The tarry liquid and the coke also occur in the manufacture of gas on the large commercial scale, as in the production of gas in the clay pipe. The coke, as we have seen, is a most valuable fuel. The tar, which for a long time was regarded as a nuisance, is now one of the most important articles of commerce, as from it are produced the aniline colors now in such general use.

When bituminous coal is subjected to the process of destructive distillation, as in the manufacture of illuminating-gas, there is a large number of substances produced, some of which are solid, some liquid, and others gaseous. The following is the list of them given by Bunsen:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke</td>
<td>68.93</td>
</tr>
<tr>
<td>Tar</td>
<td>12.23</td>
</tr>
<tr>
<td>Water</td>
<td>7.40</td>
</tr>
<tr>
<td>Marsh-gas</td>
<td>7.04</td>
</tr>
<tr>
<td>Carbonic oxide</td>
<td>1.13</td>
</tr>
<tr>
<td>Carbonic acid</td>
<td>1.07</td>
</tr>
<tr>
<td>Olefiant-gas</td>
<td>0.78</td>
</tr>
<tr>
<td>Sulphuretted hydrogen</td>
<td>0.75</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.50</td>
</tr>
<tr>
<td>Ammonia</td>
<td>0.17</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.08</td>
</tr>
</tbody>
</table>

These products are very much more numerous than the above analysis of Bunsen would indicate, and in order to give some adequate idea of the great complexity of a substance, which is regarded by so many as a very simple one, we quote in full the analysis of Prof. C. F. Chandler, as given in Johnson's Cyclopaedia, showing the composition of the products from coal in the process of gas-making.

I. COKE.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>90-95</td>
</tr>
<tr>
<td>Sulphide of iron (Fe₇S₈)</td>
<td>3-10</td>
</tr>
<tr>
<td>Ash</td>
<td>3-15</td>
</tr>
</tbody>
</table>

II. AMMONIA WATER.

1. Acid carbonate of ammonia, NH₄HCO₃.
2. Hydro sulphate of ammonia, NH₄HS.
3. Sulpho-cyanide of ammonia, NH₄CNS.
4. Cyanide of ammonium, NH₄CN.
5. Chloride of ammonium, NH₄Cl.

III. TAR.

1. Hydro-carbons.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Specific Gravity</th>
<th>—Boiling Points.—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzol</td>
<td>C₇H₈</td>
<td>0.850</td>
<td>82° C. 179.6° F.</td>
</tr>
<tr>
<td>Toluol, methyl-benzol</td>
<td>C₇H₈</td>
<td>0.870</td>
<td>111 231.8</td>
</tr>
<tr>
<td>Ethyl-benzol</td>
<td>C₈H₁₀</td>
<td>0.892</td>
<td>192 289.6</td>
</tr>
<tr>
<td>Xylo1, dimethyl-benzol</td>
<td>C₉H₁₂</td>
<td>0.867</td>
<td>140 284</td>
</tr>
<tr>
<td>Cumol, propyl-benzol</td>
<td>C₉H₁₄</td>
<td>0.870</td>
<td>153 307.4</td>
</tr>
<tr>
<td>Methyl-ethyl-benzol</td>
<td>C₉H₁₂</td>
<td>0.890</td>
<td>190 320</td>
</tr>
<tr>
<td>Tri-methyl-benzol</td>
<td>C₉H₁₄</td>
<td>1.066</td>
<td>166 330.5</td>
</tr>
<tr>
<td>(Pseudo-naphthol, naphthylene)</td>
<td>C₇H₈</td>
<td>1.153</td>
<td>220 428</td>
</tr>
<tr>
<td>Naphthaline</td>
<td>C₁₀H₈</td>
<td>1.153</td>
<td>220 428</td>
</tr>
<tr>
<td>Anthracene</td>
<td>C₁₄H₁₀</td>
<td>1.147</td>
<td>300 572</td>
</tr>
</tbody>
</table>

and a large number of others.

2. Alcohols.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Specific Gravity</th>
<th>—Boiling Points.—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol, carbolic acid</td>
<td>C₇H₈OH</td>
<td>1.055</td>
<td>180° C. 256° F.</td>
</tr>
<tr>
<td>Cresol, cresylic acid</td>
<td>C₇H₉OH</td>
<td>200 392</td>
<td></td>
</tr>
<tr>
<td>Thymol</td>
<td>C₁₀H₁₃OH</td>
<td>220 428</td>
<td></td>
</tr>
</tbody>
</table>

and others.

3. Acids.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Specific Gravity</th>
<th>—Boiling Points.—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic</td>
<td>HC₄H₄O₂</td>
<td>1.062</td>
<td>117.2° C. 243° F.</td>
</tr>
<tr>
<td>Butyric</td>
<td>HC₄H₇O₂</td>
<td>0.9817</td>
<td>164 327.2°</td>
</tr>
</tbody>
</table>
REPORT OF THE BOARD OF HEALTH.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Specific Gravity</th>
<th>Boiling Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2N</td>
<td>Gas.</td>
<td>— —</td>
</tr>
<tr>
<td>CH_2N</td>
<td>Gas.</td>
<td>— —</td>
</tr>
<tr>
<td>$\text{C}_6\text{H}_7\text{N}$</td>
<td>102.8°C</td>
<td>359.6°F</td>
</tr>
<tr>
<td>$\text{C}_9\text{H}_8\text{N}$</td>
<td>205</td>
<td>401</td>
</tr>
</tbody>
</table>

and others.

5. Pitch.

Oxidized bituminous bodies, whose nature has not been accurately determined.

IV. GASES.

1. Luminants.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}_n\text{H}_m\text{N}_x\text{O}_y$</td>
<td>— —</td>
</tr>
<tr>
<td>C_2H_4</td>
<td>.976</td>
</tr>
<tr>
<td>C_{10}H_8</td>
<td>— —</td>
</tr>
</tbody>
</table>

and others.

2. Diluents.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>.0013</td>
</tr>
<tr>
<td>CH_4</td>
<td>.5594</td>
</tr>
<tr>
<td>CO</td>
<td>.3727</td>
</tr>
</tbody>
</table>

3. Impurities.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2S</td>
<td>1.1747</td>
</tr>
<tr>
<td>NH_3HS</td>
<td>— —</td>
</tr>
<tr>
<td>CS_2</td>
<td>— —</td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_4\text{S}$</td>
<td>— —</td>
</tr>
<tr>
<td>SO_2</td>
<td>— —</td>
</tr>
<tr>
<td>$\text{C}_3\text{H}_6\text{HS}$</td>
<td>— —</td>
</tr>
<tr>
<td>C_2H_4</td>
<td>— —</td>
</tr>
<tr>
<td>NH_4CNS</td>
<td>— —</td>
</tr>
<tr>
<td>NH_4CN</td>
<td>— —</td>
</tr>
<tr>
<td>NH_4HCO_3</td>
<td>— —</td>
</tr>
<tr>
<td>CO_2</td>
<td>1.5240</td>
</tr>
<tr>
<td>N</td>
<td>.9760</td>
</tr>
<tr>
<td>O</td>
<td>1.1096</td>
</tr>
<tr>
<td>H_2O</td>
<td>.6201</td>
</tr>
</tbody>
</table>

The process of destructive distillation is thus described in Johnson's Cyclopaedia:

"When organic bodies are excluded from the air and subjected to heat they undergo decomposition, and the constituent atoms or molecules rearrange themselves into new compounds. In manufacturing illuminating-gas the products are: 1. Coke, consisting of carbon, sulphuret of iron and ash; 2. Ammoniacal liquor, containing carbonate, sulphide, chloride, cyanide, and sulpho-cyanide of ammonium; 3. Tar, embracing a great variety of hydro-carbons, alcohols, acids and bases, among which are benzole, toloule, xylol, naphthaline, anthracine and carbolic or phenic, oxypenic and cresylic acids, together with creosote; also several bases, aniline, iridoline and rubidine; 4. Illuminating-gas, containing light-yielding compounds such as acetylene, C_2H_2; ethylene or olefiant gas, C_2H_4; benzole, C_6H_6; naphthaline, C_{10}H_8; propyle, C_3H_7; butyle, C_4H_9; mingled with hydrogen, carbonic oxide and impurities such as carbonic acid, ammonia, cyanogen, sulpho-cyanogen and sulphuretted hydrogen. Upon the temperature to which the coal is subjected depend the products of distillation."
MANUFACTURE OF COAL-GAS.

The manufacture of illuminating-gas from coal, consists of three separate and distinct processes: First, the distillation of the coal; second, the condensation, and third, the purification of the gas. The distillation is accomplished in clay retorts (C), which are set in brickwork, and of which five, six or more in number make a bench. These retorts are heated by a coke-fire placed beneath them. Into each retort 200 to 300 pounds of bituminous coal is put, then the mouth of the retort is securely closed by a lid which is held tightly in place by a screw, besides having the joint between it and the mouth-piece of the retort sealed by a luting of clay. When the process of distillation is at an end these lids are removed, and the coke within the retort is taken out, and after cooling, is sold for fuel or utilized in heating the retorts again. The temperature to which the retorts are heated is very high, sometimes as high as 2,370° Fahr., which brings them to a white heat. The coal within the retort is not exposed to so high a temperature, that being from 1,500° Fahr. to 1,600° Fahr. It has been found that about four hours is the proper length of time to continue the distillation, in order to produce the best results, and this, therefore, is the usual time which elapses from the closing of a retort until it is again opened. During the distillation, the gas which is driven off from the coal within the retorts is conveyed through the standpipes to the hydraulic main. This constitutes the second step in the process, and is the beginning of the condensation, or the removal from the gas of the water, the tar and all other substances which have come off with the gas which can be condensed. The hydraulic main (B), in which this condensation occurs, is a large pipe running the length of the benches and on top of them, and contains the condensable matters in the gas. When the fluids in the main reach a certain height they overflow into the tar well. From the main the gas passes to the exhauster, which is a pump drawing the gas from the main and forcing it to the condensers, or in some gas-works to the scrubbers first.

The condensers (D) are a series of iron tubes which are kept cool by being bathed in water. As the gas passes through these tubes the tar and ammonia-water are separated and are discharged into receptacles (E). The scrubber (O), into which the gas next passes, is a large iron cylinder containing brushes, stones, and other materials, so

arranged as to break up the spray of water which is discharged into it, with which the gas is still further deprived of its tar. From the time that the gas enters the hydraulic main until it reaches the stage we have just described, it is constantly losing its impurities. There still remain, however, several of the most important of these, which, unless removed, would render the gas totally unfit for use within the dwelling. These are sulphuretted hydrogen, carbonic acid and certain compounds containing sulphur and ammonia. The objection to sulphur is that in burning it becomes converted into sulphuric acid, and where this takes place to any extent injury may result to the bindings of books and to other materials. This does not occur to any appreciable degree in this country, so far as we have been able to ascertain, although in London, Manchester and elsewhere, it seems to have been recognized. Metallic substances, as for instance, the gas-fittings and stop-cocks may be corroded if ammonia is present to any extent, while the carbonic acid not only is an objectionable ingredient on the score of health, but is also an actual injury to the illuminating power of the gas, reducing it five per cent. if present in the gas to the amount of one per cent. The object of purification is to remove these impurities from the gas before it is distributed to the consumers.

Purification of the gas may be effected in four different ways: 1st. By wet lime. 2d. By dry lime. 3d. By hydrated-sesquioxide of iron, known as the Laming process. 4th. By bog-iron ore, known as the iron ore process. In the wet lime process the gas passes through milk of lime and the carbonic acid and the compounds of sulphur are effectually removed. This is the oldest method of purification, and one of the best, but it is not now much employed for the reason that when the lime is removed from the purifiers (M) the odors which escape are extremely offensive and cause serious complaint from the residents about the gas-works. The dry lime process, in which the gas is purified by dry or slightly moistened hydrate of lime, is subject to the same objections; but by a device which is now in use in many of the works, the gases which prove so offensive when passed into the air are drawn off from the lime, and after being washed and purified are then permitted to escape into the air in an unobjectionable condition. In the Laming process, hydrated-sesquioxide of iron artificially prepared, with sulphate of lime and sawdust, is substituted for the lime. In the iron ore process, bog-iron ore, a native hydrated-sesquioxide of iron, is used in place of the artificial product of Laming. The object of all these processes is the same, namely, to form compounds of the
lime or the iron with sulphuretted hydrogen, carbonic acid and other
impurities, so that when the gas leaves the purifier it shall have been
deprived of these objectionable ingredients. That process will there-
fore be adopted which, in the best and most economical manner,
accomplishes this object. As has been already said, the wet lime
process is seldom used. In Europe the dry lime process is not employed,
while in this country it is the one in general use, though at some of
the works native iron ore is used. The gas of Paris is purified by the
artificial hydrated-sesquioxide of iron. In Germany the iron ore
process is the one generally adopted, as is the case in Liverpool and
in some of the London companies.

Composition of Purified Coal-Gas.—The analyses of purified illum-
inating-coal-gas vary considerably. The following is an analysis by
Prof. Ira Remsen, of Johns Hopkins University, of the gas used in
the city of Brooklyn, and may be considered a fair average:

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (Carbonic acid)</td>
<td>0.0</td>
</tr>
<tr>
<td>Illuminants (ethylene, &c.)</td>
<td>4.8</td>
</tr>
<tr>
<td>Carbon monoxide (Carbonic oxide)</td>
<td>7.9</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>50.2</td>
</tr>
<tr>
<td>Marsh-gas</td>
<td>29.8</td>
</tr>
<tr>
<td>Nitrogen (by difference)</td>
<td>7.8</td>
</tr>
</tbody>
</table>

| Total | 100.0 |

MANUFACTURE OF WATER-GAS.

The principle upon which this method of making illuminating-gas
depends is that when steam is passed over incandescent carbon, it is
decomposed, the hydrogen being set free, and the oxygen uniting with
the carbon to form carbonic oxide and carbonic acid. In order to
enrich the gas it is treated with naphtha. There are several processes
by which illuminating water-gas may be manufactured; the one which
we shall describe is that of Tessie du Motay.

Gasogens.—These are two vertical iron furnaces lined with fire-
brick, and separated from each other by a partition in which are the
pipes in which the steam made in steam-boilers is superheated. In
the furnaces themselves anthracite coal is put, and an intense heat gen-
erated by passing an air-blast through the coal. When the tempera-
ture is sufficiently high the steam is decomposed, and the resulting
gas is stored in holders. Each gasogen holds about ten tons, and
every hour not far from 1,000 pounds of coal is introduced. It is
estimated that one ton of coal will produce 45,000 feet of water-gas.
The coal is only partially burned, and is again used in making steam.

Carburetters.—From the holders the gas passes to the carburetters.
Each carburetter is a closed chamber, surrounded by a hot-water
jacket. Inside is a series of pans, arranged one above the other and
connected by pipes. Naphtha is introduced at the top of the car-
buretter, and after partially filling the first pan flows through the
pipe into the second, which it also partially fills, overflows this, and so
continues until all the pans are filled. The gas is admitted at the
bottom of the carburetter, and passing through the same overflow
pipes takes up the naphtha, the vaporization of the naphtha being
greatly aided by the heat of the hot water in the jacket. The tem-
perature of this water is 175° Fahr. Five gallons of naphtha are
sufficient to enrich 1,000 feet of gas.

Fixing the Gas.—In this process the vapor of the naphtha is con-
verted into a higher and more stable hydro-carbon compound. This
step is exceedingly important, for without it the naphtha vapor would
separate from the water-gas by condensation as soon as the tempera-
ture was lowered. For the fixing of the gas it is passed through long
retorts, eighteen feet in length, which are heated by fires beneath. In
these retorts are perforated partitions, which serve to break up the
current of gas and to arrest the lampblack which is formed. From
the retorts in which the gas is fixed it passes to the hydraulic main,
condensers, scrubbers and purifiers, as in the process already described
in the manufacture of coal-gas, lime being used for purification.

Composition of Purified Illuminating Water-Gas.—As was said of
coal-gas, so it may be said of water-gas, that the analyses of the gas
produced by the different processes and at the different works vary
considerably. The following is the analysis, by Prof. Remsen, of the
gas manufactured in Brooklyn by the Tessie du Motay process:

<table>
<thead>
<tr>
<th>Component</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (carbonic acid)</td>
<td>0.3</td>
</tr>
<tr>
<td>Illuminants (ethylene, &c.)</td>
<td>12.85</td>
</tr>
<tr>
<td>Carbon monoxide (carbonic oxide)</td>
<td>28.25</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>30.3</td>
</tr>
<tr>
<td>Marsh-gas</td>
<td>21.45</td>
</tr>
<tr>
<td>Nitrogen (by difference)</td>
<td>6.85</td>
</tr>
</tbody>
</table>

| Total | 100.00 |
After purification the gas, by whatever process produced, passes through the station meters, where its amount is registered, and then into the gas-holders, where it is stored, and from which it is distributed to the consumers. The gas-holder (G) is a familiar object in all gas works. It is a large iron cylinder, which floats in water, and into which the gas passes from the purifiers. It is suspended in such manner that as the gas enters it rises, and falls as the gas is consumed. It is so weighted as not to exert a pressure on the contained gas to exceed that of a column of water six inches in height. The largest one in the world is now being constructed at East Greenwich, London. Its diameter will be 250 feet, and its capacity 8,250,000 cubic feet. From the holder the gas passes through a governor or pressure-regulator, which, as its name implies, regulates the pressure of the gas as it passes into the mains. The mains are cast-iron pipes, laid three feet under the ground, made in lengths usually of twelve feet, and leaded at the joints. That there is always some leakage of gas from these pipes is shown by the fact that whenever the streets are dug up in which gas-mains are laid, the earth is found to be impregnated with gas, which is readily recognized by its peculiar odor. The amount of this leakage is placed by the companies as high as ten per cent., though some regard it as amounting to fifteen per cent. Experiments are now being tried of substituting wrought-iron mains for those of cast-iron which are now in use, with the idea of reducing if not entirely abolishing this leakage, and also of reducing the size of the pipes and greatly increasing the pressure, a six-inch wrought-iron pipe being expected to do the work of a sixteen-inch cast-iron one. From the mains the gas is conveyed into houses through wrought-iron service pipes. At the point where the service pipe passes into the house is usually located the house meter, through which the gas passes to the consumer and in which, while it is passing, its quantity in cubic feet is measured, and a record thereof made on the dial.

When illuminating-gas was first introduced meters were unknown, and the consumers were supplied by contract, paying according to the number of burners and the hours during which gas was burned. The gas company turned the gas off and on at stated times, so that if light was wanted in the interval, lamps or candles were resorted to. In 1815 the first meter was invented, and from that time until 1833 a number of improvements were made. In the latter year Bogardus, an American, invented a meter which has served as a pattern for all the dry meters now in use. There are two kinds of meters now generally employed, the wet meter and the dry meter.

Fig. 3. Vertical section of the early wet meter. The gas enters the chambers k at the center through the tube a and passes out through the slits e on the periphery of the drum, escaping at the outlet g.

Fig. 4. Front section of the modern wet meter. Shown also in Figs. 5 and 6. a is the screw on the axis of the drum which turns the toothed wheel α, the axis of which passes through the tube e to the system of wheels in the space F which moves the hands on the index-dials shown in Fig. 9.
The Wet Meter (Figs. 3, 4, 5 and 6).—This meter is so called because water is necessary for its working. It is a metal box with a drum inside, divided into four chambers. This drum revolves in a cistern of water of sufficient depth to keep the drum about three-fifths submerged. The gas enters at one side and escapes at the other; its entrance causes the drum to turn upon its axis, and by means of gearing this motion is communicated to the dials, which register in cubic feet the amount of gas passing through the meter. One of the objections to the wet meter is the liability of the water to freeze. This can be prevented by placing it so that it will not be exposed, or by protecting it by means of thick cloth or felt, or by substituting for the water some fluid which will not freeze, as glycerine or a solution of chloride of calcium, four pounds being dissolved in a gallon of water.

Dry Meter (Figs. 7 and 8).—These are made some with two and some with three compartments, each compartment being divided by a flexible diaphragm. The two diaphragm meter was invented by Croll and Richards, and the one with three diaphragms by Defries. In the working of the meter one-half of the chamber is filling with
Fig. 8. Front view of the dry meter. A is the inlet, B the outlet. The gas enters at A, passes to the valve box V, enters the space F (Fig. 7), and the left hand chamber Fr, while its pressure forces the gas out of the space F and the right-hand chamber Fl. When the left hand chamber is full and its companion empty, the slide-valves reverse the flow of gas, and the empty chamber and the space & receive, while the full chamber and the space F deliver gas.

gas while the other is emptying. By the movement of the diaphragms and levers connected therewith the quantity of gas is measured on a dial as in the wet meter. Wet meters are very simple in their construction, and for this reason are preferable to the dry meter, into the construction of which a great many parts enter, but their liability to freeze, and the irregularity in their movements when there is too much water or too little, have caused them in many places to be superseded by the dry meter. It occasionally happens that the dry meter fails to move; this is especially liable to occur if a house has been unoccupied for a considerable time and the gas consequently not used, the valves in such case not working freely. The method of construction of these meters is shown in the accompanying illustrations. In the index (Fig. 9) the top dial, which indicates feet, is used only when the meter is tested. In the figure the reading would be 89,300, indicating that that amount of gas in cubic feet had traversed the meter. By taking readings of the index at different times the amount of gas which has been consumed in the intervals can be readily ascertained.

ILLUMINATING-GAS.

Fig. 9. Index of a dry meter.

MANUFACTURE OF AIR-GAS.

This gas is employed for lighting dwellings or other buildings in localities where there are no gas-works, and when gas is preferred to lamps or other means of illumination. This gas is a mixture of air and the vapor of gasoline, one of the products of the distillation of petroleum. The apparatus for its manufacture consists of a blower and a generator. (Fig. 10.) The generator is placed in a brick vault at a distance of about one hundred feet from the building. Gasoline is a very inflammable liquid, and is also so volatile that at ordinary temperatures it gives off vapors which, mingled with air, form an explosive mixture. That properly managed these machines are safe seems to be well established, the thousands of them in use at the present time being sufficient proof of that. The gasoline is transferred from the barrels in which it is purchased to the generator. Within the dwelling is the blower or air-pump, which is moved by a suspended weight. The air is forced by this blower into the generator, where it takes up the gasoline vapors, and is in that condition returned to the house where it is to be consumed. The evaporation of the gasoline in the generator lowers the temperature, and this retards the evaporation, and consequently depreciates the light. In order to avoid this in some of these machines, there is a device by which the generator can be warmed. Prof. Chandler tested the gas from a number of these machines, and found it to vary from 10 1/2 to 30 candles.

We have now given the principal kinds of gas in general use in this country, but have not described them all for want of space. From 1824 to 1828 the New York Gas Light Company supplied its customers
with gas made from oil. For this purpose kitchen grease and other cheap varieties of fat were utilized. The melted fat ran into heated retorts where it was decomposed into gases consisting of hydrogen, marsh-gas, olefiant-gas, etc. Oil-gas is very rich in illuminating properties. From one gallon of oil from 80 to 100 feet of gas can be obtained. The company to which we have referred sold the gas at the rate of $10 per 1,000 cubic feet. From 1828 to 1848 this same company changed its process of manufacturing illuminating-gas, using resin instead of oil, the methods differing but little. For this gas $7 was charged per 1,000 cubic feet. In the latter year coal was substituted for resin, and the price fell to $2.50. Some gas companies

Fig. 11. Seven-foot bat-wing, lava tip, mounted in pillar. The bat-wing burner is so called from its fancied resemblance to the wing of a bat. Inasmuch as the flame from such a burner extends so far laterally, there is always danger of cracking the globes if this pattern of burner is used.

Fig. 12. Six-foot fish-tail, lava tip, mounted in pillar. The fish-tail burner is so constructed that the flame, like the fish's tail, from which it derives its name, is fluked and does not spread so much laterally, and can be used with globes without danger of breaking. Its upper edge is irregular, and it is therefore not so symmetrical as that of the bat-wing. While this is true of the older form of the fish-tail, it is not true of the more recent form, as for instance, that of the Bray burner. This is spoken of by the inventor as a union jet rather than a fish-tail. And the openings are so arranged as to produce a perfectly symmetrical flame which has all the advantages of the bat-wing and fish-tail, and can be used with safety with globes. The combustion in this flame seems to be more perfect than in either the bat-wing or the ordinary fish-tail, though less so than in the argand.

Fig. 13. Brass pillar for tips.

Fig. 14. Seven-foot bat-wing, lava tip.

Fig. 15. Four-foot bat-wing, lava tip.

Fig. 16. Two-foot fish-tail, lava tip.
have used wood from which to produce their gas, subsequently enriching it with naphtha.

CANDLE-POWER.

The illuminating power of gas is designated by being of so many candle-power. By this is meant that a burner consuming five feet of gas per hour, the pressure being 0.5 inch, gives the same light that a given number of standard candles would. The candles employed for the test are of spermaceti, and burn two grains, as nearly as possible,

Fig. 17. Gleason's noiseless argand burner, of brass, with valve.

per minute. The instrument by which the comparison is made is called a photometer, that of Bunsen, or a modification being generally employed.

FIXTURES AND BURNERS.

The variety of gas fixtures and burners in the market at the present time is very great, and if a description should be attempted of them all, more space would be required than is at our disposal. We shall therefore limit description to those which are in most common use, or which, for one reason or another, have points of special merit. All gas-burners may be said to be modifications, in one or more particulars, of three types—1, the bat-wing (Figs. 11, 14 and 15); 2, the fish-tail (Figs. 12 and 16), and 3, the argand (Figs. 17 and 18). The bat-wing (Figs. 11, 14 and 15), is a burner in which the opening in the tip through which the gas escapes is a simple slit. The tips are made of different materials. Sometimes they are made of so-called lava, which is really steatite or soapstone, and sometimes of metal.

Fig. 18. Sugg's London argand, lava.

Nickel tips are now being used to a considerable extent. Iron tips are also in use, but are liable to become corroded. By making this slit narrower or wider in the manufacture, by using a thinner or thicker saw, the quantity of gas which is burned will be smaller or larger. A slit which will emit three feet of gas per hour is known as a three-foot burner, one that emits four feet, a four-foot one, and so on. (Fig. 19.) Of course the amount of pressure under which the gas is admitted to the burner will materially affect this, and the
Fig. 19. Forms and sizes of flames from a five-foot fish-tail, lava tip burner.

standard is one inch. That is, a three-foot burner will emit three feet of gas per hour when the gas is under a pressure of one inch. If the pressure be greater than this the amount of gas will be increased and vice versa. The tips are usually distinguished by the number of rings upon them, but this is a very unreliable guide. There is a pocket test meter (Fig. 20) which can be employed by any one, and which, while it is not absolutely accurate, still gives an approximate estimate of the amount of gas emitted from the burner upon which it is placed. The cost of this is $3. A gauge (Fig. 21) can also be obtained for $2, with which any one can ascertain the pressure at any burner by simply unscrewing the burner and substituting the gauge. Some varieties of gas, as for instance, the water-gas, produce so much heat that lava tips are liable to split and break; the use of the nickel tips overcomes this difficulty. The second type of burner is the fish-tail. (Figs. 12 and 16.) The tip of this burner is perforated by two holes which face each other, so that the gas when it emerges comes out in two streams which strike against each other, and when ignited the resulting flame is not so spreading as in the bat-wing. When globes are used over the burner they are less liable to be cracked if the tip is a fish-tail rather than a bat-wing. The best burner of this kind that we have seen is known as “Bray’s Special.” It is of English make, and the tip, or rather what serves as a tip, is an enamel placed within the pillar, as the holder of the tip is called. The designations on these burners of “4 feet,” “5 feet,” etc., are very exact, as we have found by actual test, and the light is very soft and brilliant. For general use it seems to leave nothing to be desired where a fish-tail burner is preferred. These burners can be purchased for about ten
fish-tail burners (Fig. 23), but the obstructions are not so readily removed as in the bat-wing. The third type of burner is the argand. (Figs. 17 and 18.) This consists of a ring pierced with holes through which the gas escapes, and is so constructed that air is admitted both outside and inside the flame, thus insuring more complete combustion and a better light. This burner requires a chimney, and although it gives a brilliant light is a great consumer of gas.

One of the best of these is the "Silber-Argand." Mr. Silber found as the result of a great many experiments that an excess of fuel over air produced imperfect combustion by lack of oxygen; while excess of air over fuel produced imperfect combustion by diminution of temperature. In either case the light would be diminished, and the injurious products of combustion which would be thrown into the air would be increased. With the idea of adjusting the air to the fuel he devised an argand burner made of brass and steatite, so constructed that two currents of air pass into the interior of the flame and two others on the outside. The opening by which the air is admitted is so adjusted as to cause the least consumption of the gas to produce the highest luminosity.

Another excellent argand is that of Mr. Sugg, commonly known as the New "London" Argand. (Fig. 18.) The body of the burner is supported on three tubes, by which it can be distinguished from other argands. "The combustion chamber in this burner is also made of steatite, and is pierced with holes so arranged as regards size and number that the quantity of gas the burner is required to consume shall pass out at an inappreciable or at the least possible pressure, in order that the oxygen of the atmosphere shall combine with the burning gas by natural affinity only, leaving the nitrogen to pass freely out at the top of the flame." Such is the description of this burner given by its inventor. A burner in general use in this country is the
"Gleason’s Noiseless Argand" (Fig. 17), a regulator or governor being attached beneath the burner by which the amount of gas can be regulated according to the pressure.

The impression seems to be quite general that if gas can be heated before it is burned, its illuminating power will be greatly increased. The opinions on this subject seem to vary very much. Certain experiments performed at Munich resulted in an increase of 18 per cent. of the illuminating power when the temperature of the gas was raised from 64.5° Fahr. to 288° Fahr. In 1871, the London gas referees repeated these experiments, and reported that when the temperature of gas was raised from 69° Fahr. to 296° Fahr. they found no appreciable difference in its illuminating power. One of the referees has since performed the experiment again. He passed the gas through about six feet of copper tubing heated to dull redness, raising the temperature of the gas from 58° Fahr. to 350° Fahr. He completely confirmed the results obtained by the London referees, and reports that there is no appreciable difference in the illuminating power of the gas when so heated. Heating the air supplied to the burner increases its illuminating power about 9 per cent. for 450 degrees of temperature. The experiments which are here reported, and which seem to show that heating the gas does not increase its illuminating power, are not entirely in accord with some of the most recent experiments, notably those of Dr. C. W. Siemens, F.R.S., of London, and Herr F. Siemens, of Dresden, who have devised what is known as "Siemens' Regenerative Gas Burner." This burner was constructed "with a view to the attainment of increased illumination, greater economy in the consumption of gas, absolute steadiness of light, perfect ventilation, complete combustion, and the utilization and disposal of the products of combustion." Of these burners R. B. Carter, F.R.S., says they are now in use at the eastern extremity of Holborn, "where they cast into comparative shadow the Edison electric light in the adjacent street." It would be impossible without a diagram to describe this burner so that it could be thoroughly understood. The principle on which it is constructed is that of heating the air and the gas before they unite, and this is accomplished by compelling the heat produced by the combustion of the gas to heat the air and gas which are on their way to the burner to be consumed. The temperature to which the gas and air are heated is 1,652° Fahr. Competent men have tested the illuminating power of the largest size of this burner, and pronounce it greater than that of any other burner ever constructed. For street and other use, where a single light of such power is desired, nothing would seem to be better adapted, but for dwellings or rooms, where the smaller sizes would give all the light necessary, it is not much, if any, superior to some of the best argands, besides being very expensive.

Mr. Grimston, of England, has invented a burner which he claims will be available for both small and large spaces. It is described as practically an argand burner turned upside down, the flame curving round the margin of an inner cylinder, which contains the ring of gas tubes, and then ascending within an outer cylinder or chimney. The space between the two cylinders contains cross-tubes, which open into the external air by one extremity, and into the internal cylinder by the other, and which thus supply heated air to the flame. It is said

![Fig. 24. Beacon bracket light.](image-url)
of these superheating burners, and we have not been able to carry out such experiments as to warrant us in either indorsing or disparaging them. One other claim which is made in this patent is the suspension of a shade or globe by its flange from above to avoid shadow underneath. This is in itself a great advantage, irrespective of the merits of the burner. These burners are being generally introduced, and give a very satisfactory light, though if they are placed too near the head the heat from them is objectionable. This, it is claimed, is overcome by means of a shade which is placed beneath the light.

Fig. 23. Albo-carbon light.

Another light which is quite popular is the "Albo-Carbon." (Fig. 25.) Connected with the burners of this light is a reservoir, in which is placed naphthaline, a hydro-carbon which is white in color, and gives its name to the light. When the gas is first lighted there is no appreciable difference between this flame and an ordinary gas flame, but in a few minutes the heat produced by the burning gas melts and volatilizes the naphthaline contained in the reservoir, and its vapors mixing with the ordinary gas greatly enrich it. The light produced is very steady and brilliant, and it is claimed for it by Dr. Carter that it not only, in round numbers, gives twice the ordinary illumination for half the amount of gas consumption, but that the light is of purer and better color than any other with which he is acquainted. The naphthaline is very cheap, and is now made in a very convenient form for handling, being moulded into pieces about an inch long, and of the diameter of a candle. This light will undoubtedly grow in popular favor. This light is in use in the city of Brooklyn, in the largest library in the city, and also in a number of large and long-established commercial houses, and appears to give satisfaction. The proprietors of one of the largest dry-goods houses in the city says of it: "The light is remarkably steady, of great brilliancy and intensity, and enables our customers to distinguish colors to an extent that before their use was almost an impossibility." In reference to the economy of this burner, the reports are very favorable. An architect of the city of New York told the writer that in a hall where these lights were now in use, the gas-bills had been reduced from $3.00 to 50 cents a month. When the reservoir which contains the carbon is opened for the purpose of refilling, there is an odor of naphthaline, which, however, seems not to be objectionable to those who use the light.

In reference to the use of air-gas, it need only be said that the ordinary burners are not well adapted for it, and that consequently special burners are provided; also, that higher chimneys are required than for ordinary gas, in order to prevent the flame from smoking.

The earlier burners were so constructed that whenever the pressure of gas was increased the flame would "sing" and flare up, and in order to avoid this it was necessary to turn the key so as to shut off the excess of gas. Under such circumstances the issuing gas would not be entirely consumed, and the products of the incomplete combustion would vitiate the air and smoke the walls and ceilings. This has been to a great degree overcome by introducing "checks" to the escape of the gas. These consist of wire gauze, pieces of cloth or other obstacle to the outflow of the gas, and are placed in the pillar, as the holder of the tip is called. In the Empire burner (Fig. 26) this result is obtained by an adjustable screw in which is a slit which can be
increased or diminished, so that a very small or a very large flame can be had at pleasure. While the pressure may thus be regulated at the individual burners, it is often desirable to be able to regulate it at the meter. For this purpose "governors" or "gas regulators" are employed. These are so constructed that no matter what the pressure may be in the street mains, it is kept at a constant value within the house.

The use of globes to protect the flame from draughts is at the sacrifice of illuminating power. Even a piece of clear glass held in front of a flame will reduce the illumination one-tenth. Clear glass globes will, therefore, diminish the illuminating power of the flame. Experiments which have been made with these globes, has demonstrated that the one in which the loss is the least, is that having a lower opening of two and a half inches. With such an opening the reduction amounts to about eight per cent, while if the opening is but one inch, the loss is nearly twenty-nine per cent. In addition to this great loss when globes with small openings are used, the flame flickers. In order to have a steady flame the opening must be considerable, that of two and a half inches being well adapted to secure this object, although many of the globes now used have a lower opening of four or five inches.

Among the annoyances incident to the use of gas for lighting is that caused by the gas going out. This, in accordance with "the natural depravity of inanimate objects" is very apt to occur, if at all, at times when it is most inconvenient. It is related of Sir Walter Scott that when he first inhabited Abbotsford, which he had had fitted up with gas fixtures, he gave a house-warming, during which the gas went out leaving his guests in total darkness, but of late years such accidents are exceedingly infrequent.

In the article already referred to, Prof. Chandler gives the following instructions for guidance in such events. When the gas goes out in a house supplied through a wet-meter, it may be due to (1) a deficiency of water; (2) excess of water; (3) freezing of the meter; (4) freezing of the service-pipe; (5) condensation of water in the house-pipes. The best and safest plan is to send for a gas-fitter or to the office of the company; but as the difficulty is most likely to occur during the evening, when help can rarely be obtained, it is well to know how to meet the emergency. (1) Close the cocks of all the burners which are open, save one; (2) go to the meter with a candle, which must be held at a distance to avoid explosion; (3) turn off the gas at the main cock between the street service-pipe and the meter; (4) unscrew the plug u (Figs. 3 and 4) of the waste-water cistern, to let out any excess of water present; (5) unscrew the supply-plug v (Fig. 5) and the overflow plugs (not shown in the figures, the tube n serving as an overflow in this meter), and pour in gently a small quantity of water till it issues from the overflow or at u. When it ceases to flow, carefully replace all the plugs and turn on the gas, when the meter will be in working order. (6) If the meter is frozen, pour boiling water over it, and run a little hot water through the orifice v, letting it escape at u, or at the overflow. (7) A frozen service-pipe generally necessitates an excavation, and the application of heat outside the house. (8) Condensation in the pipes is first indicated by a flickering or jumping of the lights, due to the partial obstruction of the gas by the accumulation of water in the depressions in the line of pipe, which breaks it into bubbles. Removing a burner and blowing violently into the pipe will sometimes force the water beyond the hollow. This latter difficulty is, however, best removed by a gas-fitter, or by sending complaint to the...
ILLUMINATING-GAS.

126 REPORT OF THE BOARD OF HEALTH.

office of the company which supplies the gas. At the present time it is, perhaps, never necessary to dig up the street when the pipe freezes. Instead of this alcohol is poured into the pipe, and this forced in with a force-pump.

Another discomfort connected with the use of gas, which may also be regarded as a detriment to health, is the heating of the air, especially in the upper portions near the ceiling. That this is so to a very great degree any one can satisfy himself by standing on the upper steps of a step-ladder in a room in which gas has been burning for some time. In addition to this the injurious products of combustion accumulate as well as the heat, and the air becomes doubly deteriorated for purposes of respiration. In public halls, in some instances, provision has been made for the escape of this heated and vitiated air through the ceiling, but in most buildings no such attempt is made. The Hammond Globe-Light and the Siemens Regenerative Burner are especially valuable as overcoming these objections to the use of gas. Still another annoyance is the smoking of walls and ceilings. This, of course, due to the unburned carbon of the gas, and can best be avoided by the use of burners so constructed as to accomplish this; but it may also be avoided by the use of Mica Smoke Catchers (Fig. 27), which can be readily attached to the top of the globe, or if the burner is an argand, to the top of the chimney. If, however, much smoking occurs, it is an indication that something is wrong, and that the pressure or the burners need regulating. The injury to the walls is of slight moment as compared to the injury to health which may be caused by respiring air vitiated in this manner.

INJURIES TO PROPERTY, HEALTH AND LIFE INCIDENT TO THE USE OF ILLUMINATING-GAS.

Gas may escape from the mains of the companies in the public streets and find its way into buildings and thus cause damage. In a case which occurred in Providence, gas passed from the main into the sewer, thence into a greenhouse connected therewith, and destroyed the plants contained therein. When the sewers were built the earth about them was not properly packed, and the subsequent settling made a leak in the gas pipes, with the result already described.

One of the commonest dangers connected with the escape of gas from the pipes is that of explosion. The mixture of atmospheric air and gas forms a most explosive compound, and if a light is brought in contact with it, an explosion is sure to result. In some cases this has been due to the escape of gas from the street-mains, and in some manner this gas has found its way into the interior of the building. Its odor being detected, some one has imprudently gone with a lamp or candle to ascertain the cause, and an explosion has resulted, sometimes doing injury only to property by shock or fire, and sometimes maiming and even killing the unfortunate investigator or others. We will relate a number of instances illustrative of this danger, which have actually occurred. In one case gas escaped from a broken main and found its way into an occupied house in large quantities. It then took fire and exploded, injuring two persons. In this case there was no gas used in the house. In another case a meter was removed, the workman neglecting to close the pipe. A man went with a lighted candle into the cellar where the meter had been, the gas and air exploded, and he was injured. In another case there was a settling of earth in the street, resulting in a break in the gas-main; the gas found its way into a vault in which tools were stored. The owner going into this vault with a light was severely and dangerously injured by the explosion which followed. In still another case, in which a service-pipe leaked, a servant, in searching for the leak with a lighted match,
caused an explosion which was so terrific as to destroy the interior of the house. A mother and her child aged seven years were blown up to the ceiling of a room on the first floor and fell through the broken floor, together with pieces of timber and boards, into the cellar. The child sustained a compound fracture of the thigh, and was confined to bed for three months.

The number of cases in which illuminating-gas has produced sickness and death by its inhalation are more numerous, perhaps, than by its explosion. In one case which occurred in Boston, the gas which escaped from the street and the next house found its way into the third story of an occupied dwelling, and on the following morning a child occupying a room on this floor was found nearly insensible, after having vomited from the effects of the gas. In another case, gas escaping from a street-main found its way through a sewer and drain into a tenement in which there were no gas-pipes. Several persons were made sick by it, and one died, the disease being a fever of a typhoid type. Numerous cases are on record where insensibility or death resulted from the blowing out of the gas. In most of these instances the victims have been persons unaccustomed to the use of gas, who were stopping for the night at some town or city hotel. In other cases the injury has resulted from turning the stop-cock of the fixture too far. In old patterns of fixtures there are no stops, and it is very difficult to turn such a stop-cock exactly at right angles; as a consequence, the gas escapes after it is extinguished. And in the modern gas fixture everything is made so light that there is but little durability. The pin which stops the key from turning too far is very slight, and gas-fitters are often called upon to replace them, so that the same accident is liable to occur with these as with the older patterns. Still another cause of accident in these cases, and one which occurs even with those who are perfectly familiar with the use of gas, is the turning of the flame down, so that but little gas is burned. Subsequently the pressure on the gas is reduced by the company at its works to such a point that it is not supplied to the burner in quantity to ignite, and the flame is extinguished; or a puff of air from an open window, or caused by the closing of a door, which would produce but a temporary effect on a flame of any size, striking on the reduced flame, puts it out altogether. The gas continues to escape during the entire night, and in the morning the occupant of the room is found insensible or dead. In some of these cases the deaths have been

suicidal. One is on record in which a man shut himself in an ice-box, and with him a rubber-tube connected with an open gas-burner. Defective gas fixtures have also been responsible for the death of human beings, the gas escaping from the defect. Death has also resulted from the inhalation of illuminating-gas which was used in a gas-stove for heating purposes, the stove being out of repair and not consuming the gas supplied to it.

The methods of avoiding most of these dangers suggest themselves after reading the accounts just given. We can of course do nothing individually to stop a leak in the street-mains, but we can, if any such come to our attention, notify the companies, who will be sufficiently interested to make the necessary repairs at the earliest possible moment. If the odor of gas is detected within the dwelling, no attempt should be made to discover its source with a light of any kind, for fear of explosion, until the apartment has been so thoroughly ventilated that no possible danger exists, and even then, if search can safely be delayed, it is best done by daylight. Under no circumstances should a lighted match, candle or other light be carried where gas has escaped, until the precaution to thoroughly ventilate has been taken. All the gas-pipes of a house should be thoroughly tested to be sure that they are tight in every part, and capable of retaining the gas within them under the greatest pressure to which it is liable to be subjected. At the present time no municipal government is complete without departments properly organized for the inspection of the walls and beams of buildings as to their strength, and the sewer and drain-pipes as to their ability to exclude sewer-air. Similar inspection should be made of the gas-pipes before a building is occupied, and from time to time thereafter, to insure tightness of joints and soundness of fixtures. For hotels, boarding-houses and other similar places, more reliable and better-constructed stop-cocks should be required. Stop-cocks should be so made that it would be impossible ignorantly to leave them open so that gas could escape. This would perhaps be best accomplished by constructing the cocks on the principle of steam-valves or air-cocks, so that when the gas was turned off and extinguished, it could not again be turned on again without reversing the motion. If the present pattern of cocks are to continue in use, their checks or stops should be made of such size and in such manner that when the light is extinguished one could be sure that the gas was completely shut off, although the room was so dark that one could not see. And these
precautions should not be left to the discretion or choice of the householder, but should be regulated by ordinance. All fixtures should be similarly tested, and repaired or discarded if found defective. Those not provided with stops in which the cocks can be turned all around should not be used at all. Gas should never be turned down to a small flame and thus left. This is a common practice in households where there are children, after they have been put to bed, and it is also done by adults throughout the entire night. It is not only a dangerous practice, but is also an objectionable one on other grounds. Perfect rest can only be obtained in the absence of noise and light. If a light is burned all night the sense of sight is affected by it, and the sleep will be disturbed by dreams or otherwise; the same will happen if there is not absolute quiet. For the best interests of health, both in children and adults, the sleeping-room should be dark.

In the preparation of this paper the following authorities have been freely consulted:

Johnson's New Universal Cyclopedia.
Encyclopaedia Britannica.
Appleton's Cyclopedia.
Our Homes, and How to Make Them Happy. Article on Lighting, by Robert Brudenell Carter, F.R.S.
Medical Physics, Draper.

The chapters on "Lighting," by Dr. Carter, are admirable in every respect. They not only treat of illumination by means of gas, but by electricity and oil as well, and deal also with the physical nature and physiological effects of light and color, of natural light and windows, and of the regulation and control of daylight illumination. The article on Gas Lighting, by Prof. Chandler in Johnson's Cyclopedia, is the best general article we have been able to find upon the subject, and the illustrations, Figs. 2 to 19, with one exception, have been furnished by the publishers of that Cyclopedia. The illustration of the candle-flame (Fig. 1) is from Draper's Medical Physics, and is furnished by the publishers, Messrs. Lea Brothers & Co. This is the best book for study and reference on the subjects of which it treats with which we are acquainted. The illustration of the gasoline apparatus is from the 3d vol. of the American Supplement to the Encyclopaedia Britannica, published by Messrs. Hubbard Brothers.
THE RELATION BETWEEN DRINKING-WATER
AND TYPHOID FEVER.

BY DOWLING BENJAMIN, M.D., OF CAMDEN, N. J.

Typhoid fever is caused by a peculiar and specific poison. I do not
know that this is denied to-day by any one competent from careful
study and thorough investigation to give trustworthy information on
this subject. Does it arise de novo? All the investigations that I have
made have proven to my mind that the poison which produces typhoid
fever cannot be generated spontaneously, but must come from another
case. I am aware that there are some physicians who even now believe
that it originates de novo, and they give the examples and cases which
prove to their minds the truth of such belief. But the cases cited as
proofs, in my opinion, are generally defective, and do not exclude the
possibility of infection from a preceding case.

What are the physical characteristics of the virus of typhoid fever?
Is this virus a liquid, a solid, or a gas? Evidently it is matter of
some kind. Inorganic matter may be either solid, liquid or gas;
organized matter is never liquid, never gas. We conclude it is not a
gas, for the following reasons:

First. The gas has not been isolated.

Second. It would be more apt to go through the air than otherwise,
which is not the case with this virus.

Third. All known gases that affect the system profoundly, or that
affect the system at all, do so at once, or in a few minutes after their
reception into the system.

Can a dose of carbonic-gas, ammonia-gas, illuminating-gas or any
other poisonous gas be taken and lie in the system for from two to
six weeks and then begin to develop a train of trouble—a uniform
succession of symptoms, like typhoid fever, or small-pox or any other
of the zymotic diseases? Never. Is it a liquid—this virus? The
same objections apply to this theory that apply to the theory of its
being a gas. Is it composed of solid particles? If so these particles must be of nearly the same specific gravity as water. There is no evidence to the contrary, at any rate, and these solid particles must be very small, for water known to contain typhoid fever poison is often apparently clear and bright. Filters do not seem capable of sieving out these particles—these poisonous particles, and this poisonous matter. At least, water has been filtered through 10 and even 100 feet of sand and earth, coming out clear, but still bearing the poison in sufficient quantities to produce fever and cause death. So far as is at present known the poison has not been filtered out of the water by any kind of filter. This would lead us to think it was really dissolved in the water, but for the fact that a system of very fine filtration has not been tried upon suspected water, and then the water given to persons to drink, to see if the disease would be produced by it. There is no case on record of any person ever having taken the disease from water that has been boiled, thus showing that, as far as known, the boiling temperature destroys the poison.

The theory that the poison of typhoid is an organized poison, or germ, or bacillus, seems to explain its action more completely than any other. This phase of the subject was carefully discussed, and its progress given at length by me in an essay written in 1876, and published in “The Country Practitioner,” Volume 2, Nos. 6 and 7. Whatever may be considered the nature of this virus, the fact that water is its principal distributor is certain. Indeed, a careful study of the cases and statistics that I have examined seem conclusive that at least 95 per cent. of the cases of typhoid fever come directly from the water. The poison which produces this disease does not go through the air. Physicians permit people to go into the sick-room where this disease exists. Washerwomen have been known, in rare instances, to take the disease from the water containing the soiled linen, which has infected their hands and gotten into the mouth and absorbents. The infected wash-water is very often thrown on the ground near a well, or into the sewer with the more poisonous dejects. I have seen two cases that occurred among sailors who drank water from the Delaware river, opposite the Philadelphia sewers.

There is one instance† where it has also been shown that cattle have

* Klebs and Eberth both claim to have discovered the bacillus.—Phila. Med. Times, Dec. 8d, 1881.
† Kloten, Germany, 1878.—Berlin Klein. Wochenschrift.
acter of the dejecta is not destroyed by freezing, but is only kept in a state of hibernation. A great part of the three months’ accumulation of dejecta was suddenly swept into the rapidly running stream, and reached the lower reservoir as quickly as a man walking fast could have arrived there.

“In fifteen days from this time the epidemic began, fifty cases occurring daily between the tenth and twentieth of April. Up to the present time twelve hundred have been sick, and one hundred have died, out of a population of eight thousand. For the first three weeks the few people in the town who used well-water exclusively escaped the disease. The period of incubation varies between ten and twenty days, or longer, and therefore no other conclusion can be arrived at than that the infective poison existed in the mountain water, and originated from the one case of fever in the house on the side of the stream.”

This entire and comprehensive report is on file in the mayor’s office, Philadelphia.

Last October a severe epidemic of typhoid was in progress in Inlaystown, N. J., about 40 miles from Camden, and I went out there to investigate it, and was greatly assisted in so doing by the kindness of Dr. H. G. Norton.

I found that a brook about 4 feet wide runs through the village. A street runs parallel with the stream, about 100 feet from it. A row of houses is situated between the brook and street, and the back-yards extend to the brook, about 40 feet distant. Between the brook and the houses is situated a row of privies, and a row of wells for drinking-water. The privies are situated on the bank of the brook, so that the fecal matter from them has to run only a distance of only 3 or 4 feet to get into the stream. The wells are between the stream and the dwelling-houses, and about 30 or 40 feet from the brook. The somewhat impervious strata has a slight dip towards the wells and underlies the locality. On measuring it was found that the floor or bottom of the wells was not more than a few inches below the floor of the brook, and when the water was high in the brook it was also high in the wells. The soil between the brook and the wells of the privies was porous.

Beginning up the stream and designating the houses, which are but a few feet apart—not over 60 feet—and numbering them one, two, three, I will give you the following explanation:

In 1883 a family came to number one, suffering with typhoid-malarial fever and diarrhoea. The children had fever and bowel trouble, with diarrhoea, lasting for months, until the spring of 1885. On August 14th, 1885, a young lady was taken with typhoid fever in this same house. On August 28th, another young lady was taken with the disease in number two, the next house below—down the stream. August 27th, a patient at number three took the disease. September 12th, another patient took the disease in number three. In September, a relative of the family in number two visited the town, drank the water, and died in a few weeks afterwards of typhoid fever. September 30th, a patient opposite to number two took the disease. In the spring of 1886 the family had moved out of number two, the well had been kept closed and had not been cleaned out. A new family moved in number two in April or May, 1886. The boys drank the well-water, in spite of protests, and took the disease in June, 1886. One of the brothers died. The girls, who would not drink the water, escaped the disease.

An analysis of this water from the wells, for the State Board of Health, by Professor H. B. Cornwall, of Princeton College, showed the water to be thoroughly contaminated with organic matter. Evidently the virus had remained in one of these wells; a year had passed and yet the winter had not been able to kill it.

The length of time that the virus will remain active has not been ascertained, but it is known to be years in water that is not much disturbed.

I have cited these examples because they are so recent and so near at hand. Hundreds of instances might be cited, and the evidence piled up almost ad libitum, but, if further examples would not be superfluous in this paper, the time allotted to me would preclude my citing them here. I might say now that much of the data upon which my remarks have been based is not included in this paper for the same reasons.

In the face of what is already known, I do not think that any student of sanitary science can deny that the poison of typhoid may be carried by the water-supply. I do not know that any do deny this, but the extent to which it is carried by water, and the preventability of the same, are the great points that do not seem to be sufficiently appreciated by us, and scarcely appreciated at all by the people in general.

If the people can be made to understand that almost all the cases of typhoid fever come from the water-supply, and that there is no
disease more easily prevented than this, we shall have accomplished
the first great step towards the annihilation of one of the worst
destroyers of mankind.

Look at the dreadful suffering caused in Philadelphia and Camden
to-day by ignorance or indifference to these facts. Only a few days
ago a noble wife and young mother died in our city of this dread
disease, thus blighting the prospects of a happy family, and as I stood
by her bedside I could but regret that another valuable life had been
needlessly sacrificed.

The city of Camden had connected the water-closets and sewers
containing the poison with the water-supply, and then distributed it
thus laden with the deadly virus to the inhabitants of this city but a
few hours after it had left the sewers. The husband of this lady “as
a lamb dumb before its shearsers, opens not its mouth,” so he paid his
water tax to the city, his wife drank the dearly-bought “distillment”
and gave up her life as the result.

Is there no redress? Is there no hope of escape for the people in
these great cities? Must they continue to die by hundreds, as the
death returns show every year, at a greater cost and expense than
pure water could be procured for? Philadelphia also pours the
poison into the cup and then puts it to the lips of her citizens, and
kills off about 700 of them a year, according to the official report.

The disease cannot occur without the virus to produce it, and the
virus can be kept out of the drinking water, and it should be kept
out at any cost. It would pay at any price. Every death that is
preventable is needless, and is a reproach to the community. Dr. E.
O. Shakespeare, an eminent investigator of contagious diseases, who
has been sent abroad by the highest executive authority of the United
States to investigate the nature and causes of cholera, says, in the
“New York Medical Journal,” January, 1885, “that epidemics of
typhoid fever are absolutely preventable and controllable, and
neglect to employ proper means to this end should be regarded as inex-
cusable.”

Great reforms and revolutions have taken place within our own
recollection, and the student of sanitary science fondly dares to indulge
the hope that even during his short life he may have the pleasure of
seeing the death-rate from typhoid fever reduced more than 90 per
cent.

ROADS AND STREETS AS SANITARY MEASURES,
AND HOW TO CONSTRUCT THEM.

BY C. PHILLIPS BASSETT, C.E.E.M., NEWARK, N. J.

The problems at present demanding solution are those which affect
our social relations. Every year adds to their complexity. Prominent
among these are questions relating to roads and streets. Arteries and
veins hold no more vital relation to our lives than public highways
sustain to the body politic. The importance of the subject in hand is
therefore apparent and pressing. But there is prevalent a general
and persistent indifference to the conditions of the public roads and
streets. This is the more formidable since it is not recognized. The
ignorance on which this indifference is founded, exists not only among
the general public, but among many who should be technically con-
versant with the advantages of proper roadways and the methods of
securing them. There is wide need for greater light on this subject.
There are many communities in the State constantly wasting money
in foolish or incomplete construction, and there are others which with
equal folly refuse, on the ground of economy, a fair outlay to put the
roads and streets in even decent condition, and keep them so.

I cannot fail to feel a deep regret that the limited space at my com-
mand prevents adequate treatment of a matter of such importance to
the entire State. The uses of roads and streets are so general, and
affect so intimately our existence, that we may expect to find them
exercising a potent influence as sanitary measures. Yet it must be
admitted that the element of sanitation is given little, if any, weight,
in determining present practice in the State.

Financial considerations will continue to exert the chief weight in
determining public policy, even in the face of sanitary disadvantages;
it is therefore thought wise to show that in many instances the two
may go hand in hand. The presentation of the economics of the
question may present attractions which will result in securing benefits
of importance to the public health. It seems necessary in the present
condition of public opinion to demonstrate the first to secure the
second. The time will come when questions of public health will
not be conditioned on penurious economy.

So far as the limits of this paper will permit, the subject will be
considered under the following heads:

1. The advantages of properly constructed (a) country roads, (b)
county roads, (c) village, town and city streets; 2. Outline of the
methods of construction; 3. Maintenance; 4. The conditions to which
the different systems of construction are best adapted.

I realize that in thus planning the paper, I have outlined a work
which might readily occupy a treatise, but the comprehensive character
of the subject allotted me seems to require broad and general treatment.
I shall feel satisfied if this paper secures merely a recognition of the
importance of the subject with which it deals. More complete details
may be developed for particular cases requiring professional attention.

COUNTRY ROADS.

The sanitary advantages of country roads, when properly con-
structed, are somewhat indirect, but are powerful, and reach out in
their influence to distant populations. Many people seem to take it
for granted that because they have been accustomed to travel over
muddy, crooked and steep roads, they need no change; and broad-
minded men follow in their steps only from an unwillingness to
endure the abuse and trouble necessary to secure the needed improve-
ments. How often have we seen team and driver laboring, worrying
or swearing (these are not sanitary conditions) along a muddy road
when excellent material for road making was available, tantalizing in
its proximity and ease of procurement. Considering the advantages
of good roads in point of travel, it is amazing that material furnished
so lavishly by nature should be so little used. Country roads are
frequently made by scraping sods and dirt into the wagon track to be
worn down as best they may. After every heavy rain they become
almost impassable. Stones, loose or fast, are rarely disturbed. The
"mending" which they receive frequently makes them worse. An
intelligent observer estimates that 90 per cent. of the labor taxes
during the past 20 years has been thrown away to the farmers in most
of the townships of the State; and it may be certain that so long as

the condition of country roads depends on the ignorant and shiftless
care of a gang of hands turned out for a holiday, bent on celebrating
their annual "working out the tax" in jollification, unrestricted by
intelligent oversight, so long rural populations must be subjected to
inconvenience, dangers and losses. Any one who has compared the
ease and freedom with which a team travels over a hard, smooth
track and the hard work required to drag a load through mud and
over stones on badly made and managed roads, or noted the seasons
when traffic is suspended, or small loads hauled to market at an
expense absorbing their value, cannot fail to recognize the necessity of
greater attention to this important subject. The farmer who lives in
a neighborhood of good roads is practically much nearer market,
mills, schools and churches than he who must travel the same distance
over rough, muddy and stony roads. If access to these is of advan-
tage, good roads are admitted to be sanitary measures and tending
toward wholesome conditions. Roads were long ago declared to be
the tests of civilization. Wagons, harness and horses last longer,
owners accomplish the work more rapidly and with greater satisfac-
tion, and thousands of dollars will be annually saved in every country
by good roads in place of bad ones.

COUNTRY ROADS.

But if the roads which merely join parts of the same district are
with advantage properly constructed and maintained, much more must
the highways which stretch out their vigorous arms across a county or
a State, and draw together distant populations, merit intelligent care.
Recent progress in road making is very limited; it is questionable if
we have made so little advance in any other department of constructive
science; we, as a country, are far behind Europe in this particular.
We have relied too largely on railroads for the development of our
territory. In sections of the country, the railroad companies have
encouraged the construction of public roads, adjacent to their lines, by
delivering road material at bare cost, on the principal that these feeders
increase the territory and traffic reached by their roads. Certainly
communities should be at least as zealous in their own behalf.

No waste can be looked upon as wholesome. Power and time need-
lessly lost in the transactions of trade make themselves felt in the
development of communities. Gillespie, in his work on "Roads and,
Railroads," gives some excellent illustrations of loss occasioned by "chance" roads. In Anglesea, England, an old road rose and fell between its two extremities, twenty-four miles apart, a total perpendicular amount of 3,540 feet, while a new road laid out by Telford, between the same points, rose and fell only 2,257 feet; so that 1,283 feet of vertical height is now avoided, which every horse passing over the old road had previously been obliged to ascend and descend with its load. Other equally-pointed illustrations may be found in all parts of the country. In laying out new roads the "ounce of prevention is better than the pound of cure." M. Morin, in his very careful experiments in Paris, established the following proportions of force to load on various surfaces (on a basis of one to two-ton loads). On common earth road, 1 to 11; on earth road, in good condition, 1 to 29; telford road, very dry and smooth, 1 to 54. To appreciate the difference which would be occasioned by travel on these various roads let us assume a case. It is admitted that a horse at steady work all day will exert a force of 120 pounds. Suppose a team drawing loads successively over the above roads; on the telford they can draw $240 \times 54 = 12,960$ pounds; on the very good earth road, $240 \times 29 = 6,760$; on the ordinary earth road, $240 \times 11 = 2,640$; or it takes five times as many teams to cart a given weight on the ordinary dirt road as on the telford. If the cartage on the dirt road requires 25 teams a day, on the telford road 5 would do the work; these at 4 a day would effect a saving of 80 a day or $24,000$ a year. It is no easy matter to overlook the waste of bad roads in the face of such figures. It is readily seen that if any construction would save $24,000$ a year, $480,000$ at 5 per cent. might be invested in it with advantage, since the saving effected in the haulage would be only one of the benefits; convenience, comfort, less wear of horse-flesh and vehicles, speed, freer trade (owing to wider district available), and all the benefits of civilization which come with increased intercourse would be received. [Under the same conditions here given the annual saving on good gravel over the earth road would be $16,800.$] To put the matter in another way. If we could, by improving a road, double the freight carried by each team at an expense of $2,000$ per mile, we would, on a basis of 15 miles a day for loaded teams at 4, save interest of this cost at 5 per cent., in the passage of 375 loaded teams, annually.

Were it within the scope of this article such striking illustrations of the waste of money incident to bad roads could be multiplied till even the unreasonable reader should be satisfied. But it is not possible to give this subject further space here; the case is a strong one and easy of complete demonstration.

If rural districts secure advantages by improving highways leading to the populous centers, no less important are the benefits received by the inhabitants of the latter. The increased communication develops trade, food products are more abundantly secured, in better condition and at lower prices, suburban property is developed, and the tendency to overcrowd the centers is lessened.

A strong illustration of the advantages incident to good county roads is secured in the record of successful development in Essex county, in this State. Much could be desired in these roads which is not now obtained, but the results secured should encourage similar work throughout the State. Every year the line of growth is pushed farther from the county seat, and every year Newark's influence and contributing territory widen. It would be well for the latter city if the pavements within her limits compared at all favorably with the radial county roads. It is notable that the development of the county has been confined closely to these roads, except where municipalities along their lines have raised the standard of their own street pavements and secured lateral growth.

Thorough study of the subject (not here possible) will make apparent the immense service rendered by good county roads in developing parts of the State now unproductive. How best to secure uniformity and certainty in this matter is worthy of the most careful thought and action. To procure a healthy state of internal communication and trade nothing else can take the place of well-kept public roads. And it is possible to secure them at a cost easier to be borne than the present insufficient and wasteful system. The picture of the entire State happy and prosperous in possession of good and well-kept roads is an attractive one. To produce it is a matter for thoughtful legislation.

VILLAGE, TOWN AND CITY STREETS.

As we approach the centers of population we find the direct sanitary benefits of properly constructed roads increasing rapidly with the increase of adjacent populations. It is to be remembered that the aggregate area of the street surface of towns and cities varies from one-quarter to one-half of the entire area. The character of this large
exposed surface, with which the entire population comes intimately in contact, cannot fail to affect their health.

The principal requisites of a roadway within towns are properly included in the following points: 1st, cheapness of first construction; 2d, rapidity of construction and facility in repairs when taken up for gas or water-pipes, or sewers; 3d, durability; 4th, firmness of foothold for horses; 5th, smoothness; 6th, noislessness; 7th, cleanliness; 8th, imperviousness to water. Little consideration is given to most of these points in determining present practice in the State. It would be difficult to discover which essentials were in mind when "cobbles" were selected as surfacing for a very large share of the streets of our cities, in some cases as much as 90 per cent. of the paved surface. It might be possible to overlook this abominable folly, if there were a tendency to supersede it by proper pavement. But it is lamentable that the first cities of the State are every year laying a large number of cobbles on important streets, with hardly a dissenting voice.

It will be profitable to consider the requisites prescribed.

First. Where the tax-payer is consulted, economy is a premise which may safely be assumed. Construction, however, should be cheap, only so far as it is consistent with other requisites.

Second. The construction of a new pavement involves interruption of travel. In some cases this produces serious inconvenience, which increases rapidly with the length of the interruption. It then becomes important to reduce to a minimum the time of construction. This is perhaps an objection—on crowded streets—to concrete foundations, which must be allowed to "set" for at least a week before bearing the heavy travel. But the writer deems this objection of small importance, and considers that the public, if enlightened, would submit to the inconvenience necessary in order to secure the more reliable and durable pavement. This conclusion is based on the fact that in Liverpool, where there is probably more heavy traffic than in any other city in the world, the most important thoroughfares have been entirely paved on Portland cement concrete foundations.

More system should be used in introducing municipal improvements to prevent their conflicting. Frequently a street is paved, and soon after ripped up to lay a water-pipe, only a short interim, and then up it comes to accommodate a gas-pipe, and then still later a sewer trench disfigures the paving. Added to these are the service pipes from the houses frequently put in without any consideration for the pavement,

or restrictions or regulations from the authorities. Such tampering with public property is far too frequent and should be avoided where possible, and carefully regulated whenever necessary. To provide for the occasions when the pavement must be torn up, it should be so constructed that it may be replaced without material detriment. Too much care cannot be exerted to secure this result.

Third. On durability depends the comparative economy of different pavements. If one pavement costs $4 a square yard, and another $2, and the first lasts twice as long as the second, obviously the first is preferable, since it avoids the double breaking up of the street and interference with traffic. More than this, the average character of the first pavement is superior to the second, since it only once reaches the condition requiring renewal, and it is recognized that pavements in the last stages of usefulness are more dangerous to health and more expensive for traffic than at other periods of their existence.

A pavement, like every other structure, where permanence and durability are sought, should have a substantial foundation; under the influence of traffic, the best wearing surface possible will give way unless provided with a sufficient foundation. The surface material must be both tough and hard; actual tests on short pieces of pavement secure the only conclusive testimony in selecting a new material. On these two elements rests very largely the durability of any pavement.

Fourth. The desirability of a firm foothold for horses, always great, increases with the weight of the traffic. Exceedingly valuable statistics have recently been compiled by Capt. F. V. Greene, showing the liability of horses to fall on various kinds of pavements in the chief cities of this country. Over 800,000 horses and 81,000 miles were observed; the distance traveled before an accident occurred was, on asphalt, 583 miles, and granite, 413 miles. A less number of observations showed on wood 272 miles.

In London, the number of accidents from all causes is, owing to local causes, nearly three times as great, but according to observations detailed by Mr. Haywood, the eminent city surveyor, the relative dangers of asphalt and stone remain the same while the falls on wood are far less frequent. Cleanliness of pavements adds materially to their safety. Stones which polish or become slippery under wear should be rejected.

Fifth. The advantages of smoothness on a street surface are not appreciated. To the pleasure driver nothing can compare with the
delightful sensation of rolling along a beautiful avenue in a carriage without a jolt or a jar. This is by no means limited to the mere gratification of a fancy. Jolts mean wear to the vehicle and the pavement; they are noisy and wearing to the rider. The presence or absence of a smooth street pavement near the homes of invalids or delicate persons frequently determines whether they are to enjoy the benefits of a drive in the fresh air or be confined to the house. From a smooth even surface rain finds easy flow to the gutters and outlets, and the detrimental accumulations of water are avoided. The smoother the surface the less the needed "crown," reducing the disagreeable and expensive tendency of the wheels to slide toward the gutter. A smooth surface is easier to keep clean. Smoothness with hardness of surface results in great economy of horse power. Mr. Rudolph Hering has forcibly shown that if 1 horse can just draw a load on a level of iron rails, it will take 1½ on asphalt; 3½ on best Belgium blocks; 5 on ordinary belgran blocks; 7 on good cobblestones; 13 on bad cobblestones; 20 on ordinary earth road, and 40 on a sandy road.

The following very generally approved table is of interest, showing the traction on level roads formed of different materials, asphalt being taken as the standard of excellence:

<table>
<thead>
<tr>
<th>Material</th>
<th>Traction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet asphalt</td>
<td>1.0</td>
</tr>
<tr>
<td>Stone blocks, dry and in good order</td>
<td>1.5 to 2.0</td>
</tr>
<tr>
<td>Stone blocks, in fair order</td>
<td>2.0 to 2.5</td>
</tr>
<tr>
<td>Stone blocks, covered with mud</td>
<td>2.0 to 2.7</td>
</tr>
<tr>
<td>Macadam, dry and in good order</td>
<td>2.5 to 3.0</td>
</tr>
<tr>
<td>Macadam, in wet state</td>
<td>3.3</td>
</tr>
<tr>
<td>Macadam, in fair condition</td>
<td>4.5</td>
</tr>
<tr>
<td>Macadam, covered with mud</td>
<td>5.5</td>
</tr>
<tr>
<td>Macadam, with stones loose</td>
<td>5.0 to 8.2</td>
</tr>
</tbody>
</table>

Do we appreciate this? Admit the truth of these figures and the conclusion is irresistible. On asphalt a saving of 65 per cent. of the cost of haulage on ordinary belgian blocks—such a saving cannot be looked upon as theoretical; it affects the value of foods, materials and property, and touches the pocket of every citizen. The question needs careful consideration.

Sixth. Noise, as a rule, indicates wear; as a sequence, noise is expensive. The clatter and rattle of wagons over rough pavements tell that nuts are wearing loose, rivets are giving out, loss is occurring. Noisy pavements are not comfortable surroundings, but it is no mere refine-

ment to say that by reducing the din on street pavements the brain and nerves are relieved of incessant rough vibration, and this relief must be beneficial to health. This is a serious matter. Quiet in a large town where stone pavements are used is scarcely possible for a moment.

The testimony of M. Fonssagives, Professor of Hygiene at Montpellier, which is quoted by Gillmore, is valuable: "I cannot consider such purpetual vibration of the nerves as harmless, even for those who have been born and bred in the midst of the noise. It is a very genuine cause of erethism and to it must be ascribed the prevalence of nervous temperaments and diseases in the large towns. At the periods of a woman's life when she is most subject to nervous maladies, this danger should be most carefully guarded against. And what shall we say of the nerves of children and invalids? If the former are hard to rear in cities which create hysterics at eight years of age, some of the evil must be attributed to the influence exercised by noise on these little beings, in whose organization the cerebral predominance is the most marked feature. As for invalids, quiet is of the first importance, and the noise in the streets is the cruellest stumbling block in the way of recovery." The testimony of other physicians of eminence is available and corroborative. The following statistics are significant. The population of Chicago in 1868 was 5.1 times what it was in 1852. During the same period deaths from nervous disorders increased 20.5 times. Much of this remarkable wear on the nervous system is due to the fast life of the people; nowhere, perhaps, are the national characteristics of haste more fully developed. But there can be no doubt that the roar of street pavements adds materially to the nervous strain, already large from other causes. It has been well said that modern American city life is a battle of the nerves. From nursery to school, from school to college, or to work, the strain of brain and nerves goes on. In the city office, the weary toiler in the midst of long hours of work and few of rest, endures with aching head, the banging and clatter of street pavements, and feels the rasping and filling on the cord of life, wearing it thinner and thinner, till it snaps and frees him from his toil.

In all the great capitals of Europe it seems settled that the roar of noisy pavements will not be tolerated; smooth and quiet surfaces are being laid as fast as money is available. We have even greater need for such action here, in view of the national characteristics which increase our nervous tension.
Seventh. Few communities would appreciate the intimation that they lacked cleanliness, but a very small number have learned the desirability of cleanly streets. In the heart of one of the large cities of the State the writer is acquainted with a street of considerable importance, whose surface is a composition of earth and cinders; it has no regular pavement. From this street not a shovelful of dirt has been carted for years; every two or three years when the rains have washed a large quantity of the street into the gutters, making even the faulty drainage less effective, a gang of men throw this rich compost out into the street to "round up the center," and distribute disease; the process is then repeated. The street is shady and in summer is kept well watered, fostering miasmatic exhalations. Can anything be more repulsive? Yet there would be no merit in this illustration did it not reflect characteristics more or less prevalent in every town. Macadam and Telford pavements in the suburbs are almost never cleaned. Cobble-stone pavements usually get an annual scraping, when a crop is reaped which in size commends the conservatism of our city fathers. Granite blocks are usually laid in such a superficial way that joints soon become open and the surface rough; out of these irregularities it is difficult to get the dirt, and no adequate effort is made. Horse manure, the droppings from wagons (loaded with everything under the heavens), garbage, and wearings of the street surface are ground into a fine powder, moistened and saturated by street sprinkling and rain. The mass, ripe for putrefaction, furnishes rich soil for ferments and the development of germs, and then dried by winds it is whisked into the eyes, nostrils, mouths and lungs of passers-by, is blown in at the windows and swept out at the door, and so it goes on, a continual round of annoyance. With the growth of lung, throat and eye affections there is certainly reason to reduce this nuisance, even if there were no considerations of convenience, or repugnance at the personal absorption of the filth. To one familiar with the painstaking street cleaning in European capitals, the neglect here prevalent is astonishing. In Berlin the writer specially noted the cleanliness of the asphalt pavements. Every night the entire surface is thoroughly swept and then washed with a hose and jet, and finally any remaining water or dirt scraped with a rubber hoe toward the gutter and the liquid washed into the sewer. During the day men and children with brooms and pans are constantly collecting droppings and emptying them into ornamented iron cylinders, placed at intervals along the street, from

which they are taken in carts and sold. Similar care is used in other European cities.

The essentials of a street surface to secure cleanliness are: 1st, it forms little dust or mud from wear; 2d, it is easily cleaned. With these qualities secured, systematic and frequent cleansing should follow. Whenever the importance of this subject is more fully realized, considerable modification will be made in designs of pavements at present used in the State. Cleanliness is now practically impossible; but in the face of bad construction, efficient methods of cleaning should be introduced; the importance of proper construction will then speedily appear. The economy of clean streets is shown in one phase by the table given in discussing "smoothness," where the draft appears by experiment to increase rapidly on the same pavement, with the addition of dirt and mud.

Eighth. Imperviousness is a very desirable characteristic in a pavement. It was the theory of Macadam that the natural soil is sufficient to carry the loads passing over it if kept dry; so he aimed to drain the soil and cover it with a water-proof coating of broken stone. In this way he obtained a fair roadway for light traffic, at a small expense. Telford did better, for he secured all that Macadam did, with the advantage of a durable foundation capable of bearing indefinitely heavy traffic, and less liable to form ruts. So far as the writer is aware, granite blocks, wherever used in the State, have been laid with pervious or open joints. The day has long since passed that justified the absurd practice of laying the blocks on a few inches of sand, lightly tamping them, and then sprinkling a little sand over the surface, or filling the joints with it. The first rain-fall washes the sand from the surface or down through the joints and leaves each stone insulated and resting on a yielding foundation until the street fills finds its way into the joints. Attention is also called to the rapid deterioration of pavements laid in this way. One stone sinks bodily one-half inch perhaps; wheels passing over it drop from the other stones with added percussion and drive it still deeper; soon adjacent stones sink a little, water collects in the hollow, and penetrating beneath the blocks, softens the supporting ground; more stones sink and the hollow grows. Six months is usually enough to see all these phases in the life of a new pavement constructed as described, and to find the surface uneven and dirty. Urine and dissolved organic matters percolate freely through the joints and into the subsoil, and give
rise to unpleasant and dangerous exhalations. The filth found in the joints and beneath the blocks of old pavements is frequently black and putrid. The exhalations from this putrescent matter in warm, damp weather, and the dust blown from it in windy weather are most serious sanitary objections, for the conditions are just those for developing germs and bacteria. The area of joints in a block pavement covers nearly one-half of the entire paved area, and to construct these so that they may act as receptacles for the most filthy matter should not be countenanced even were there no questions involved of maintaining the uniformity of the surface and the durability of the pavement. It is believed that the pavement which combines most completely the qualities here enumerated will best meet the requirements of efficiency, economy and health.

CONSTRUCTION.

It is unnecessary to discuss here the preliminary location of roads and streets; this subject comes so entirely within the province of the civil engineer and requires such close examination and careful skill for each locality and condition that it is but proper, in a popular presentation of the subject, to omit matters requiring so much explanation and study.

Nor is it proposed to deal with details of construction. A wide range of material and design is available; the paper does not seek to limit, but to formulate the principles governing their selection.

The first requisite for a good road is drainage. Removal of the subsoil water, by stone or tile drains, if necessary, and proper form of surface to throw off water falling upon it; lateral slopes with this object vary with the material and grade of the surface. As a guide to road gradients the following table is given. It is based on the load a horse will pull on a level as one:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Horse Can Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 100</td>
<td>0.91</td>
</tr>
<tr>
<td>1 in 50</td>
<td>0.81</td>
</tr>
<tr>
<td>1 in 44</td>
<td>0.75</td>
</tr>
<tr>
<td>1 in 40</td>
<td>0.72</td>
</tr>
<tr>
<td>1 in 30</td>
<td>0.64</td>
</tr>
<tr>
<td>1 in 28</td>
<td>0.61</td>
</tr>
<tr>
<td>1 in 24</td>
<td>0.50</td>
</tr>
<tr>
<td>1 in 20</td>
<td>0.40</td>
</tr>
<tr>
<td>1 in 10</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Grades should be kept below 1 in 30 if possible.

It is an axiom of road construction that it is economy to bring good material from a distance rather than use inferior obtained close at hand. Just where this line is drawn is a matter for experiment in each case with the materials available. A case is instanced when after long experience it was found more economical to use material brought from a distance at $1.75 per cubic yard than material at hand at 50 cents. The saving in material and labor for repairs should enter the calculation.

In sandy and gravelly regions the material at hand, if properly selected and combined, furnishes all that is needed for roads subject to light traffic and pleasure driving. In a large part of the State material of this character is abundant, but is wasted through the ignorance or heedlessness of those who, if actively alive to their own interests, would long ago have appropriated and profited by it.

Too little attention is given to the foundation of roads. If a wagon with a tire two inches wide is loaded with one ton on each wheel, and is drawn over the surface of a road, the latter is compressed one-half ton per inch of tire. Unless the road has substantial foundation to distribute this strain, such load will rapidly cut ruts and so disturb the surface that heavy loads will be impossible. It is for this reason that the invention of Macadam, to construct only a thin surfacing of stone on a drained road bed, is worthless in constructing a durable road. The class known as foundation roads have received merited recognition wherever attempts have been made to construct good highways. Prominent in this class is the Telford road, which consists of a bottom course of large broken stone, closely set by hand—best on their broadest edges and lengthwise across the road—all interstices are to be filled with stone chips and firmly wedged. On this foundation the surfacing of broken stones is laid, similar to Macadam. For foundation any stones not too easily crushed or decomposed by water will do, but the surface stones should be the most durable obtainable; basalt or trap, sienite and granite are the best materials for broken stone roads. For building and surfacing material sharp gravel or screenings of broken stone answer best—no dirt should be used. In very many pleasure drives and park roads in this country gravel takes the place of the macadam of the Telford or foundation roads, furnishing a drive well suited to its purpose. In rolling broken stone roads horse and steam rollers are used. The sprinkling cart should be used with the roller. Experiments recently showed that steam rollers could
do the same work done by horse rollers at one-half the time and one-quarter the cost. It then becomes an easy matter of calculation to decide when the magnitude of the work warrants the extra outlay for the steam roller. Evidently the weight of the roller should be proportioned to the traffic which the road must bear. Broken stone roads, if properly maintained, answer well the requirements of light traffic of suburban towns and pleasure drives. But the great cost of maintenance under heavy traffic, their frequent renewal, the large detritus washed into the gutters or sewers, the dust in dry weather, and the mud in wet, restrict their usefulness within towns and cities. Other forms of pavement have therefore been devised. It is proposed to mention a few of the general classes of pavements now in successful use.

Attention has already been called to the necessity for better foundations and impervious joints for stone block pavements. Two or three cities of the State have so far advanced as to put down on their best streets granite block pavements. Thus far they are to be commended. But without wasting further compliments, reference is made to the discussion above of stone blocks laid on sand with open or pervious joints, which is the prevalent practice. It is believed that a stone block pavement should consist of durable oblong blocks, which will not polish or become slippery, 3 1/4" to 4 1/2" x 10" to 15" x 6" to 9", with the long dimension across the street, and the short one on the line of travel, so laid as to break joints, on a substantial foundation, preferably Portland cement concrete 5" to 8" thick, and with the joints filled with some impervious material, preferably a bituminous mastic, in which gravel or splinters of stone are imbedded while it is soft. For the latter purpose a greasing of cement-mortar is sometimes used, or cement mortar little more than damp is tamped or caulked into the joints. Cement is but feebly elastic, and tends to disintegrate under the continued jars.

The added durability of pavements constructed in this way more than compensates for the extra cost over the flimsy work mentioned; other advantages which are reaped will hardly be omitted after once the trial is made.

PROCESSES.

Burnettizing, kyanizing, creosoting, etc., for the preservation of wood, are so effective that it is believed that if any of them were honestly applied to wood blocks for paving, and these were laid on a suitable foundation and maintained, an excellent pavement might be secured. It must be admitted, however, that the experience with wood block pavement in this country has been peculiarly discouraging, but in London and Paris it has met with marked favor. Under existing conditions—the questionable opportunity for securing a durable pavement of wood, the strong prejudice against it founded on past failures, and the injurious effect of decaying wood on the health of the people—there seems no reason to urge its general introduction.

Searching examination of the merits of various pavements has resulted in awarding a very conspicuous position to asphalt. An expert commission in 1876 selected sheet asphalt for paving Pennsylvania avenue, Washington, D. C., to be laid with Valde Travers compressed rock, on a concrete foundation. The experiment has been so successful that at the beginning of 1886, 1,000,000 square yards had been laid in the Capital, transforming it into the best paved city in the country. Meanwhile, in Buffalo, New Orleans, St. Louis, Omaha, Philadelphia, Boston and other cities, large quantities have been laid with unvarying success. About the middle of last July, Race street, Cincinnati, was paved with sheet asphalt. A resident of the city recently wrote: "Immediately the traffic of the city was concentrated there; no noise, no dust, no mud; the street is cleansed every night. Property is now selling at 33 per cent. above any figures before attainable."

In Chicago, residents on Dearborn avenue give similar testimony. Although the sheet asphalt has achieved greatest success, block pavements of asphalt are of merit and are less expensive. The special advantages of asphalt pavements are well condensed by Gen. Gillmore. "They produce no dust, and, therefore, no mud; (2) are comparatively noiseless, the clicking of the horses' feet excepted; (3) do not absorb and retain noxious liquids, but facilitate their prompt discharge into the side gutters and sewers; (4) they are impermeable and emit no noxious vapors themselves, or allow their emission from the subsoil; (5) they reduce the force of traction, and, consequently, the expense of wear and tear upon animals and vehicles to a minimum; and (6) although they do not furnish as secure a foothold for animals drawing heavy loads as stone blocks in narrow courses, or as small cobble stones, still they do not become polished and slippery from continued wear." On account of the smoothness of asphalt it is found necessary to confine it to grades of 1 in 50 or less, but this is no
reason to reject it for general use, as such grades are infrequent, and when they occur some rougher pavement offering better foothold may be introduced. Asphalt has been unjustly credited with the faults and failures of many worthless imitations, usually composed in part of some variety of tar. The distinction is a wide one, it is hardly possible to define it here; but the writer would suggest the wisdom of being familiar with these facts before sailing off into a tirade as foolish as it is unjust. Asphalt pavements, as now constructed, are no experiment, and they are abundantly benefiting the cities in which they have been constructed. They are less expensive than good stone pavements. They are much more durable than is generally supposed, and in Boston have been shown to be well adapted to very heavy traffic. The writer believes there is hardly a street in the State over which the traffic is so heavy as to make the use of asphalt undesirable. Pavements of various other materials and combinations are constructed, but there seems hardly need for their discussion here.

MAINTENANCE.

Were there a determined effort to keep roads and streets in good condition, a decided improvement in the character of the original construction would speedily follow. For the maintenance of country roads present efforts are entirely inadequate; an intelligent head to direct repairs is essential, and something more than attention once a year is needed.

For the maintenance of broken stone roads two methods are practiced: (1) Continual patching whenever the road tends to deteriorate. This is considered to be best applicable to roads of moderate traffic. (2) Periodical additions to the entire surface, bringing the road at intervals to the original thickness. It is to be assumed that for either system intelligent direction will be secured. The first system is best adapted to roads of this class now constructed in the State. Statistics, somewhat old, but as strong now as when first collected, are given showing some advantages of proper maintenance. Accurate facts of this kind are now rarely compiled. The post road from Caen to Tours, in France, 150 miles long, was announced in an official report in 1836 to be in danger of becoming impassable, and a demand was made for a special credit of $10,000 and a large amount of material. Its reconstruction was commenced in January, 1837. During '94 the mail had required 5 horses, and 11 died from overwork. In '38 the number of horses was reduced to 3. In '39 a lighter conveyance was introduced carrying 9 passengers, drawn by 1 horse at from 7 to 8 miles per hour. In 1841 only 2 horses were required and none were lost from overwork. The expense for maintenance in '37 was $5,400; in '41 it was $3,010.

The principles governing economical road traffic are (1) secure substantial construction, giving special attention to the foundation and road-bed; (2) having brought the road to a high degree of hardness and smoothness never allow it to deteriorate. As has already been shown, cleanliness is important in maintaining roads. Pavements within cities should be protected against careless and irresponsible tearing up to put in water, sewer or gas-pipes. The surface should be kept as near uniform as possible. Greater cleanliness should be enforced. The increased difficulty and therefore cost of cleaning rough and pervious jointed pavements, if they are cleaned, will itself frequently be enough to pay interest on the cost of a very superior pavement and at the same time secure all the other advantages of such improvement. Cobble-stone pavements and all pavements with pervious joints can never be properly cleaned. The remedy is in securing impervious pavements, and in using hose and jet to aid the sweepers.

The subject of the article is so broad that the writer has felt great difficulty in treating it in the limits allowable; it has been the effort to draw attention to important omissions in present practice rather than present new matter. There is a general heedlessness to the waste of power occurring in haulage in city as well as in outlying districts; this is probably due to familiarity with it. Wherever a slight advance is made, instead of stimulating to added effort it soothes with the assurance that it is much better than before. Good roads are the first thing needful to advance the common interests of a growing people. The better they are the closer the communication and more active the trade.

There seems no way to calculate the benefit to the health of a people provided with good and cleanly streets, but that they are of advantage directly to those living near them, and also foster wholesome recreations, as driving among the delicate or well-to-do classes, there can be no doubt. This latter consideration may not seem weighty, but it must be remembered that among the classes mentioned there is a ten-
dency already prevalent to confine delicate women and children to the house, where their frail constitutions are little able to resist sickness which may be developed. The consideration has its mercenary side, for wealthy men seeking homes have been known to credit these matters so weightily as to deprive towns unprovided with streets suitable for pleasure driving of their valued residence as heavy tax-payers. As general conclusions, it is suggested that sufficient authority should be created to secure proper construction of country roads; for ordinary roads gravel surfacing on a drained road-bed, intelligently laid out, and for more important ones broken stones are well adapted. On streets in residence towns, on suburban roads, or on the less important streets of cities, broken stone or some variety of "foundation" roads should be used. Where traffic is excessive, durable granite blocks, laid as recommended above, may be used; for all residence streets, and others not designated in cities, some variety of pavement which fairly meets the requirements given above should be adopted; preference is given for ordinary cases to sheet asphalt laid on a concrete foundation. For all cases better maintenance and cleaning should be secured, alike in the interests of health, comfort and economy.

An appeal is made to the public, and particularly to those controlling construction, maintenance and health, to deeply consider this important matter. Good street coverings are not merely luxuries, they are conservators of wealth, comfort, convenience and health.

They are not less important to the toiling thousands, many of whom are injured by constant exposure to the mingled dust full of unstable organic matter.

THE HYGIENE OF OCCUPATIONS.

I. General Introduction, Ezra M. Hunt, M.D.
II. Diseases of Hatters, J. W. Stickler, M.D., Orange.
III. Workers in Silk, Flax and Jute, . . Wm. K. Newton, M.D., Paterson.
IV. Manufacture of Rubber Boots and Shoes, I. P. Davis, M.D., Milltown.

The effects of all industries on the health of those that pursue them is one of the most important subjects of hygiene. The more fully and accurately the subject is studied, the more apparent it is that in many trades and occupations the real or working life of the operative is greatly shortened by the occupation or the conditions under which it is pursued. Nor is it less apparent to the skilled investigator that many of the causes of this shortened period of labor or of life are preventable. Labor is suffering from this curtailment of healthful working power more than from any other cause. It is time that it should be more urgently dealt with from the standpoint of political economy. While that form of inspection which seeks to limit the employment of children is important, it needs the addition of sanitary care and study of occupations, in the hands of skilled experts, in this department. The facts furnished by Hirt, in Germany; and by Dr. Greenhow, in England, have been mostly confirmed. The recent decennial record of England and Wales, which has been fully studied out from large statistical data and by competent persons, shows the sad havoc that is being made. We quote a few of the facts, as in our country there is less perfection of oversight. We may remember, as aiding in the comparison, that the comparative mortality figure of the clergy is 556, and of farmers 631. Hatters have the mortality figure of 1,064; printers, 1,167; glass manufacturers, 1,190; earthenware and china manufacturers, 1,742; cotton industry, 1,088; woolen and worsted industries, 1,032; dyers and bleachers, 1,012; plumbers, painters and glaziers, 1,202; cutlery, needles, etc., 1,273.

Even such contrasts do not give a full idea of the loss of time and
labor by operatives, since most of these occupations cause long-continued disability.

Hatters suffer most from high temperature and mercurial poisoning. The facts given in our second report are this year supplemented by others.

Glass manufacturers suffer more than some suppose. The record is made in the shortening of the time of effective labor, and in the effect upon children. The dust from kilns, the high temperature and the glass-blowing, cause many lung affections.

Potters are much injured by irritating dust and exposure to vicissitudes of temperature. The physicians of Trenton report much impairment of physical vigor as resulting from the occupation. In textile manufacture, the evil arises from the minute particles of fabric and imperfect ventilation. Artisans in cutlery suffer, as do many of those in other callings, from irritating dust. So common have these labor diseases become that the awkward but expressive name of pneumonokoniosis has been given to them. Prof. Peterson, of Buffalo, gives an interesting summary as to such diseases. He says:

“There are certain employments whose victims are confined to rooms in which the air is laden with dust of either an organic or inorganic nature.

“There are the workers in coal and graphite mines whose lungs, by the inhalation of their dust, become miniature coal mines in the course of time. There are the laborers in iron and steel, such as file-makers, grinders, pin-pointers, cutters, and needle-makers, the air respired by whom containing sharp, irregular, angular particles of iron, steel, silver, and emery—substances exceedingly difficult of removal. There are the workers in stone, clay and glass, and in jewel-polishing, such as cement-makers, potters, glass-grinders, stone-cutters, lime-burners, plasterers, brick-makers, diamond-cutters and magons. Then we have those whose employments lead them to breathe an air full of matters contributed by the vegetable kingdom, carpenters, chimney-sweeps, moulards, millers, cotton-carders, grain-shovelers, charcoal-burners, and workers in flax, hemp and tobacco. Moreover, such occupations as brush-making, wool-cleaning, silk-carding, making feather ornaments, hair-picking and button-making, expose the operatives to the inspiration of various animal substances, some of exceedingly irritating nature.

“In breathing the ordinary dusty atmosphere of cities, the quantity of dust inhaled is small, and it is easily removed by natural provisions in the lungs. But besides the dust of the streets in cities, we have an enormous quantity of carbon poured into our urban atmospheres by locomotives, manufactories and dwelling-houses.

THE HYGIENE OF OCCUPATIONS.

“There is for this reason more dust inhaled than can be removed by secretion, gravity, ciliary motion and coughing. This excess of dust remains in the lungs. In looking at the epithelial cells lining the air-passages with a magnifying power of three or four hundred diameters, many of these are found to contain in their protoplasm dust-particles of various sizes and shapes.* * * Large numbers of the particles of dust remain in the tissues, but more enter the lymphatic spaces and vessels which completely fill, or are carried by their currents to the glands along the bronchi previously described. Here they lodge, these glands becoming the chief storehouses of inhaled dust. This is what becomes of the surplus of dust daily inhaled by every inhabitant of every city. Gradually the lungs become discolored by long lines and patches of black carbonaceous matter.* * *

“Thus far, I have been speaking of the lungs of those who suffer but to a moderate extent from pneumonokoniosis. Now let us turn to the operatives in the various dusty occupations I have mentioned. I will enumerate results in a few of them only. Some kinds of dust being more irritative than others, various degrees of chronic bronchitis, or bronchial catarrh, are brought about. The walls of the air-passages and bronchial tubes thicken to an enormous extent, owing to a chronic pneumonia, in which new connective tissue is formed. Masses of stored-up dust may excite acute inflammations, followed by the formation of abscesses and cavities; in fact, a fatal phthisis is brought about. In the bronchial glands it is no uncommon thing for inflammation of a supplicative nature to take place. These glands may become so large as by pressure on a bronchus to offer serious mechanical interference to respiration. Coal-dust does not seem to irritate as much as other substances, and though in coal-miners the lungs may be so filled with anthracite as to leave little trace to the naked eye of lung structure, yet the number of deaths from phthisis among them is less than one per cent. * * *

“It is among iron, steel, stone and clay operatives that the most disastrous results are obtained. Flint-makers suffer to the enormous extent of eighty per cent. from phthisis, needle-polishers following with seventy per cent, and file-cutters with sixty-two per cent. It attacks only about forty per cent. of stone-cutters, although physicians meet with so many cases that they have given it the name of ‘stone-cutters’ consumption.’ Grundstone-makers, sieve-makers, grinders, lithographers, cigar-makers, brush-makers and glass-cutters, average between forty and fifty per cent. of deaths from phthisis. Gussenbauer has described a disease of the bones and marrow due to the inhalation of mother-of-pearl dust by button-makers. Among cotton-workers we have the form of consumption known to the profession as ‘cotton phthisis,’ the dust raised by beating being composed chiefly of silicious particles, cotton fibres, and woody matter; they all suffer more or less from the bronchitis, dyspnoea, etc., which are the phenomena of that form of pneumonokoniosis known as byssinosis pul-
THE HYGIENE OF OCCUPATIONS.

DISEASES OF WORKERS IN IRON AND GLASS.

At Wheeling, West Virginia, ten large iron and nail concerns employ about 5,700 men and boys, and twelve glass-works employ about 2,650 persons. Dr. John L. Dickey, a physician of that city, gives the following valuable results of his observations and experience:

WORKERS IN IRON.

"The 'boilers' and their 'helpers,' some of them stripped to the waist, are exposed to the intense heat of the puddling furnaces as they stir the molten metal. Perspiring from every pore, they will gulp down large draughts of ice-water or step outside and stand for a few minutes in the open air or in a stiff river breeze. As they are quitting work, preparatory to going home, they are accustomed to bathe their arms and bodies in the convenient tanks of constantly-running water. Such sudden coolings are, of course, liable to cause congestions, which may be followed by some of their manifold consequences.

"The 'rollers' and 'hookers,' from the nature of their work, are more liable to strains, of muscles as well as joints. Muscular rheumatism, myalgia (cramps in the muscles) and thecitis (inflammation of the sheaths of tendons) are not infrequent among them. Overheating and sudden cooling, of course, lend their share in causing these troubles.

"The nail-feeders, sitting for hours at a time on their hard, backless stools, become more or less stoop-shouldered, and many of them are naturally troubled with hemorrhoids."

"More distinctive and more formidable, however, than all the other diseases and injuries to which these workers in iron are subjected is the so-called 'nailers' consumption,' which, in technical language, might be termed phthisis fabrum elavorum. Accepting the division of the causation of phthisis into the two classes of general and local, nailers' consumption comes under the latter. It is the mechanical or irritative form of this dread disease, and resembles anthracosis, or miners' consumption; millstone-makers' consumption; cotton consumption, to which the operatives in cotton-mills are liable; stone-masons' consumption, and knife-grinders' consumption. The last named is probably identical with nailers' consumption, as it is due to the irritation set up by particles of steel and stone-dust. Ten or twelve hours a day the nailer and nail-feeder are breathing in an atmosphere laden with minute particles of iron and steel. The nailer has charge of three or four machines, and much of his time is spent in the grinding-room sharpening the knives of the nail
machines on large, rapidly-revolving sandstones, the dust from which is an additional source of irritation to his air passages and lungs. The feeder is not exposed to this dust of the grindstones, but this danger is partially balanced by his sitting constantly on his stool in a cramped position, inspiring the metallic dust. The great bulk of the danger, however, falls on the nailer, and, no matter how broad-shouldered and full-chested he may be, nor how robust in health, he must succumb sooner or later. Besides grinding the knives, he finds it necessary to use, three or four times a day, the "patent scraper" for leveling the face of the stone, which becomes worn in grooves and grows smooth and glazed on the surface with the particles of steel. The scraper is attached to the frame, and a white, choking cloud of coarse stone-dust fills the air, which, in the words of a workman, is "very hard on the lungs." In order to obviate the danger from grinding, to some extent, Eastern nail-mills formerly used, as a rule, wet stones, but this method is too slow and is not much in vogue at present. Two of the mills here—the LaBelle and the Benwood—have introduced large and powerful fans for removing the dust. The stones are encircled half-way round by troughs, which lead into a larger conduit, through which is passing a strong draught from the fan. By this means, at least, half of the refuse is removed. It is claimed that the good results can already be seen in the improved looks of the nailers of these two mills, and that they lose less time from work on account of sickness.

"Various forms of inspirators for excluding these irritating particles have been devised, but no one of them has ever come into general use, either because they were found inefficient or on account of a false pride among these men, that prevents many of them from using such things. A handkerchief is sometimes worn over the nose and mouth, a sponge is tied in front of the face, or more complicated apparatus in the shape of inhalers is occasionally used. One of the simplest and most ingenious devices of this kind, which is used to some extent, was originated by a very intelligent nailer, a few years ago, and consists of a large artificial moustache, which affords considerable protection both to the nose and mouth. The most perfect inspirator is a small frame of wire gauze fitted to the nose. Inside of the frame is a bunch of cotton, which catches all the finer particles that escape the outer screen. The cotton can be frequently changed, which is an advantage over inspirators that are more costly and more complicated, for they soon become foul and worthless."

"Dr. Edwards, who has been the City Health Officer during the past eight years, informs me that the death record during this period shows that forty-three nailers and four feeders have died in that time; forty died of so-called nailers' consumption, the remaining seven from other causes. These, of course, were only of the four factories within the city limits. This record is not entirely reliable from the fact that very often the physician filling out the death certificate neglects to give the occupation; but, on the other hand, the occupation of nailer and nail feeder is more generally given than any others. The average age of these forty men was found to be less than thirty-nine years. By a rough estimate, made from the above-mentioned record, the number of nailers that die of consumption is about eighty out of every one hundred. From Lawson on Pneumonia, we learn that the number of people not exposed to special causes, who die of consumption, is about fourteen out of one hundred; the highest average he gives is among those exposed to the inhalation of mineral particles, seventeen out of one hundred. Niemeyer gives the general average of fourteen to twenty in every one hundred.

"Dr. J. E. Reeves tells me that he carefully examined one hundred and thirty-six nailers, a few years ago, and found only one out of the whole number whom he regarded as sound, and whom he would have recommended to a life insurance company as a good risk. In all of the others he heard bronchial respiration and discovered other signs of consolidation in different degrees.

"The Ohio Valley Protective Union and at least one of the old line life insurance companies, will not insure nailers, no matter what would be the result of a thorough examination, for the occupation is regarded as too hazardous.

"There can be no doubt that an important factor in the high mortality of nailers' consumption is the dissipation to which many of these men are addicted. They make big wages and spend money freely. * * * If a nailer, who is free from an inherited tendency to phthisis, and has no natural or acquired predisposition to the disease, wears a good inspirator while working, and takes other precautions to perpetrate and giving intelligent attention to his hygienic surroundings, he contributes a material share toward lengthening the short average of a nailer's life."

WORKERS IN GLASS

Are liable to certain diseases and injuries, peculiar to their work and surroundings. In many factories most of the workmen are not exposed very long at a stretch, their time being divided into "turns" of five hours each, an industrious workman making ten or eleven turns in a week.

"All are exposed, more or less, to a high degree of heat, but this has been much modified in late years by improvements in ventilation. A strong draught of air is driven by fans through large pipes which run to different parts of the factory and around the furnaces. These pipes have vent holes at short intervals which allow the cool air to blow on the workmen near the furnaces, or from which rubber hose
conducts it to the presses for cooling the moulds. The 'finishers' are generally exposed to the heat of the room on the one hand, or the cool air from a door or window near which they sit, on the other. The 'snappers' are exposed to the intense heat of the 'glory holes' at which they stand to melt the ware.

"The workmen who are more subject to burns, which are seldom of a serious character, are the 'gatherers,' who roll up lumps of the molten glass out of the pots and drop it into the moulds to be pressed. The 'carrying in boys,' running to and fro, sometimes get serious burns by coming in contact with the hot glass. Probably as many of these accidents happen from 'sky-larking' as from attending strictly to work.

"The materials used in the manufacture of glass are sand, soda and lime, to which smaller quantities of arsenic and manganese are added. The 'mixers' generally protect their nose and mouth with handkerchiefs. They are subject to fits of coughing and sneezing, and to more or less nasal catarrh, from the irritation of this mineral dust. The sensitive mucous membrane of the eyes also suffers from the same cause, and conjunctivitis is not uncommon with the mixers. Chronic lead poisoning, with its train of well-known symptoms, often occurs among mixers, where flint glass is made, in which lead is used.

"The 'packers' use fine oat straw and prairie grass in packing the glass in boxes, barrels and crates for shipment. They are exposed to the dust and chaff from this material, which is very irritating and sets up nasal catarrh.

"The 'washers,' women and girls employed in washing the ware, have their hands constantly in water, and often get their feet wet. Many of them, consequently, suffer from rheumatism.

"The 'mould-makers' work in cast-iron. They cut the metal with chisels, and often get chips in their eyes. A young mould-maker came to me recently with a speck of metal imbedded in the cornea. Although he had not been working at the trade very long I discovered several scars on the cornea from former injuries. I induced him to guard against such danger in the future by wearing a pair of wire-gauze eye protectors with fronts of plane glass.

"Emphysema and hypertrophy of the heart are frequently found among glass blowers, from the over distension of the lungs caused by long and hard blowing. But not so much of this is done now as formerly, and only in the manufacture of window glass and hollow ware.

"Glass making proper seems to be a healthful occupation, and glass makers who live temperately and take good care of themselves enjoy ordinary good health and fill out the full average of years."

The remedy for such of these evils as can be corrected is to be sought by (a) informing both employers and workmen as to the real risks and remedies, therefore, (6) by having competent inspectors and

THE HYGIENE OF OCCUPATIONS.

(c) by passing such laws as to buildings as shall secure the best sanitary conditions. Science and experience have shown what wonderful improvements can be made. Heating and ventilation can be regulated without draught. Dust can be to a great extent removed. Places for washing and eating can be provided. Foul particles can be passed through fire, and so in many ways the welfare of the worker be promoted. Take as an instance, in which it is desirable to get rid of dust or any particles unfit for breathing. The object then is to prevent the diffusion of such materials through the atmosphere of the room or building.

"In these cases it becomes necessary to construct tubes with openings near the source of pollution, and connected at the other, or exit end with a fan, which, when working, produces a powerful exhaust, and carries away the polluting matter as fast as it is produced. This arrangement may be, and is, applied with perfect success to remove dust, heat, steam and fumes of various kinds. The tubes may be carried overhead, underneath, or level with the sources of pollution, and the impurities carried away may be dealt with in a chamber, so as to retain them and allow the air to escape pure. A good type of this arrangement has been largely carried out for the prevention of what is called 'woolsorter's disease.' The men who sort the wool work at continuous tables, which usually are fixed along the sides of large rooms, close to walls, and at which each sorter works opposite a window, in account of the light. In sorting the wool, the sorter takes a portion from a heap placed on the table near him, and shakes it to loosen and open it out, so that he may judge of the quality, color, etc.; and it is at this point that the greatest danger of infection occurs, as the shaking sets free the dust, short fibres and other light matters, amongst which may be the bacillus or germ of infection. To prevent or, at any rate, lessen the risk of infection, there is made opposite each sorter an opening in the table, to which is fixed a short downcast tube, which is connected to a larger horizontal tube beneath the table, at the extremity of which is working a fan that produces a powerful exhaust current in the system of tubes, and carries away the dust produced by the sorters shaking the wool, which they do over the open ends of the small tubes.

"In opening the bales of wool, also, a similar arrangement is used, but on a much larger scale, as the quantity to be dealt with is very much greater. In both cases there are wire gratings above the tables to keep the wool out of the tubes and allow the solid, but not floating, matters to fall on the table for collection. This dust is most successfully dealt with by being blown into a settling chamber, in which a series of steam-jets meet and damp it, so that it is deposited, and can be collected and burnt periodically.
I may mention, amongst other applications of this system, the removal of dust from silk-dressing machinery, in which the main airducts are carried overhead, with small vertical dependent tubes, terminating in hoods, which cover the area of dust-production, confining it and facilitating its removal.

"The fine dust produced by dry grinding processes, in which metal is ground against rapidly revolving discs of emery or stone, is also removed by a similar arrangement, in which the main tubes are about level with the grindstones, and have openings opposite each stone, in such positions as to catch the dust as it is driven off and carry it away at once.

"It will occur to any one acquainted with work in factories that this system of extraction along tubes may be applied with great advantage in many cases."

The great difficulty at present is that both workman and their employers are careless, or changes are made according to the notions or suggestions of those who have no accurate knowledge as to the best methods.

The inquiry into offensive trades, and the remedies as presented by Dr. Ballard in the report of the Local Government Board of Great Britain, is an illustration of what can be done in a single direction. If only the certain knowledge now had as to the mode of securing the most healthful conditions for work could be applied, it would greatly add to the success of most industries, and add days and years of working capacity to thousands of workmen. Where men or women or children are assembled for any industrial occupation, it is their right and the right of the State that they should not be subjected to any avoidable causes of ill-health. We have directed the attention of our citizens into this subject in former reports. We this year add a few inquiries which have been conducted by competent observers. We hope, from time to time, to examine into most of the prominent in-door industries of this State, and to report upon the same.

DISEASES OF HATTERS.

It is my purpose in presenting this paper for your consideration, to have you go with me in imagination to the various departments of a hat-shop and make some observations concerning, (1) the various processes of manufacture and their attendant dangers; (2) the hygienic condition of the rooms in which the operators work; (3) the physical condition of the employees. Having done this, and considered statistics, so far as I have been able to furnish them, we will be in a position to draw some satisfactory conclusions regarding the diseases to which the hatters are especially prone.

Let us begin with the "Forming Mill" and study the various processes there carried on. The first room we enter is the "mixing and blowing room." In this department the fur, which consists of long and short fibres taken from different kinds of fur-bearing animals, is run through "picking" or "mixing" machines and thus made of uniform quality. The next process is to run this mixed fur through a blowing machine, which consists of five to nine consecutive pickers, which separate the pelts, "dags," and hair from the fur, the dust escaping through the wire screen placed above the revolving pickers. It should be stated here, that the dust just referred to escapes into the room and pervades the air which the men inhale. This blown fur is next sent to a room below, called the "forming" room, where it is weighed by girls (sometimes by boys) in the prescribed quantities for a dozen hats, and then placed in boxes. It is then put upon a Gill forming machine where the fur is placed by a girl called a "feeder" upon a revolving apron, and run through rotating pickers which disintegrate the fibres, and throw them into the chamber in which the revolving perforated copper cone is placed, and upon which the fur fibres are formed into the hat-body. When the batch of fur has all been drawn upon the cone by the exhaust fan beneath it, the "coners" cover it with cloths, thus holding the compressed "bat" upon the cone; over these a tin cover is now placed, then the cone, dry bat, cloths and covers are all removed and placed upon a rack suspended over a tub of hot water, and into which they are all immersed. They are then withdrawn and placed upon the bench, the tin cover and wet cloth removed, and the cone upon which the wet bat remains is turned upside down, and the bat slipped off and placed upon the bench, meanwhile another cone has been placed within the chamber, and when the "bat" is formed, the operation of covering, etc., is repeated. The men who work at this branch of the trade, the "coners" and "wetters," stand on wet floors, many of them wearing no shoes or stockings, and those who do, have their feet wet most of the time. They also have their arms bared to the elbows. The wet bats are placed in cloths, and the water squeezed out. They are then taken to the hardener's
bench where they are spread out in batches of a dozen, and are rolled back and forth to harden them or partially felt them. They are then folded up, put into bales and sent to whomsoever they may be consigned.

We must now consider, briefly, the hygienic condition of this department. The mixing-room is, as a rule, large, well-lighted, comfortably heated and sometimes furnished with ventilators for the escape of foul air. There is, however, no apparatus provided for the removal of the fine particles of fur which actually make the room look cloudy. The proprietor, when questioned about the effect this fur might have upon the lungs, said: “It is not expectorated by the men, and does not irritate the throat or lungs.” His statement was verified by the testimony of the men at work. In another mill, however, I found that the operatives (doing similar work) were somewhat affected by this fine fur. They complained of dryness of the nostrils and throat, sometimes positive soreness. Several years ago, before ventilators were put into Mr. Gill’s mill, he discovered that the blowing-room hands were affected with shakes. As soon as this state of affairs was known to exist, he promptly had ample ventilators furnished, and soon succeeded in restoring those already diseased to health, and prevented others being similarly poisoned. These ventilators, it should be understood, do not offer a means of escape for the fur fibres which pervade the air of the apartment, they are intended simply for the removal of the impure air. There should, however, be some suitable apparatus devised by means of which most of the fur dust could be removed from the room, for it seems apparent that air literally filled with dust of any kind, is not the best air for entrance into the lungs, throat or nostrils. I am told that in England the men who work in any room where there is dust in the air, wear small pieces of cloth over the nose to prevent the dust gaining entrance. These (mixing) rooms, because of being on the top floor and provided with many windows, may be, and as a matter of fact, usually are, freely supplied with fresh air during the warmer months of the year, and even during the winter months the air finds its way through the crevices of the closed windows as well as through those which are occasionally opened, so that so far as mere quantity is concerned, there need be no fault found, but as to quality, much may be said in criticism. These rooms are dry, so that there is no risk incurred from dampness. We next consider the physical condition of the men in this department. Let us hear their own testimony, which is as follows:

No. 1. Aged 20; has been engaged in the business 2 months; feels perfectly well. In this, as in other instances, the time of active duty was so short that no conclusion could be arrived at as regards the effect of the employment upon the health of the individual.

No. 2. Aged 37; has been 5 years in the business; does not complain of any form of illness; uses beer and tobacco.

No. 3. Aged 60; has been 14 years in the business; has never had “hatters’ shakes,” but has catarrh, cough and more or less headache; uses beer but no tobacco.

No. 4. Aged 58; 11 years in the business; had the “shakes” several years ago; also has catarrh, although it has been worse than it now is; has slight rheumatism.

No. 5. Aged 16; 9 months in the business; well.

No. 6. Aged 28; 6 years, 7 months in the business; never had the “shakes;” has never had catarrh; uses beer.

No. 7. Aged 21; 1 year, 4 months in the business; no “shakes;” has slight catarrh and dyspepsia, and says his general health is not good.

No. 8. Aged 20; 5 years in business; never had “shakes;” feels perfectly well; uses beer and tobacco.

No. 9. Aged 25; 1 year in the business; well; uses beer and tobacco.

No. 10. Aged 21; 4 years in business; never had the “shakes;” is quite well; uses beer and tobacco.

No. 11. Aged 22; 2 years in the business; has not had the “shakes” but has the catarrh (pharyngeal).

No. 12. Aged 50; 7 years in the business; never had the “shakes;” has occasional rheumatism; uses beer and tobacco.

No. 13. Aged 35; 4 years in the business; never had the “shakes;” has slight cough and pain in his legs; uses beer and tobacco.

No. 14. Aged 28; 8 years in business; never had the “shakes;” has had rheumatism.

No. 15. Aged 15; 4 months in the business; says the fur “stops up” his nose and makes it dry; otherwise he is not affected.

No. 16. Aged 16; 1 month in the business; the fur enters his nostrils and causes him some distress.

No. 17. Aged 15; 5 weeks in the business; the fur which enters his nose causes him to pick his nose a good deal; this leads to considerable irritation of the mucous membrane.
No. 18. Aged 15; 2 weeks in the business; complains of sore nose.
No. 19. Aged 13; 1 year in the business; has sore throat and nose.

It will be observed that these boys complain of sore nose much more frequently than the men. Perhaps they are not as careful to avoid inhaling the dust as the older operatives, and it may be that the short stature of the boys has somewhat to do with it, their mouth and nostrils coming much closer to the fur, as they feed it to the machines, than is the case with the men. In another shop, I was told by a man who had worked at this business eleven years that he regarded the handling of the dry fur in the mixing-room as far more dangerous than the work done by the "coners" or "wetters," because in the dry state the fur fibres are more readily inhaled, and once introduced into the nose, throat or lungs they are very apt to cause trouble, either irritation of the mucous membrane or mercurial poisoning, the latter being possible because of the nitrate of mercury which the fibres contain in appreciable quantity. My informant has had mercurial sore mouth, very bad catarrh, rheumatism, loss of appetite and impairment of memory. I also learned that the men who worked in this particular mill suffered more from catarrhal affections than was the case in some of the other mills visited, as will be seen by the record, viz.:

No. 20. Aged 37; 20 years in the business; is now absent from the mill to be treated for salivation; has bronchitis.
No. 21. Aged 15; 1 year in the business; has nasal catarrh.
No. 22. Aged 27; 4 months in the business; has nasal catarrh.
No. 23. Aged 18; 2 months in the business; has slight catarrh.
No. 24. Aged 22; 1 year in the business; has pharyngeal catarrh.
No. 25. Aged 32; 11 years in the business; sore mouth, catarrh, rheumatism and impairment of memory.
No. 26. Aged 21; 7 years in the business; has the "shakes."
No. 27. Aged 21; 1 year in the business; has nasal catarrh.
No. 28. Aged 35; 1 year, 5 months in the business; well.
No. 29. Aged 20; 2 months in the business; well.
No. 30. Aged 18; 6 months in the business; has the catarrh.
No. 31. Aged 18; 1 year, 6 months in the business; says the dust irritates his nose.
No. 32. Aged 18; 4 years in the business; has catarrh; uses tobacco.

No. 33. Aged 17; 8 months in the business; has slight catarrh; uses tobacco.
No. 34. Aged 19; 1 year in the business; has sore nose occasionally.
No. 35. Aged 18; 1 month in the business.

We learn from these statements that of 35 employes, 16 have had catarrh; 4 have had irritation of the nasal mucous membrane; 3 have had rheumatism; 2 have had the "shakes;" 2 have been salivated; 1 has had bronchitis; 1 has had cough; 1 has had dyspepsia; 5 state that their health has not been affected by their occupation.

I have been told that many more operatives would be affected with "shakes," "salivation" and respiratory difficulties if the time of service were longer than it usually is. In one of the mixing-rooms I visited there was a "self-feeder," an improvement upon the mixing machine in general use. It will, if it should substitute its predecessor, cancel the great danger to health in this department, namely, that constant exposure of the respiratory apparatus to the fine fur as it now pervades the air. It will do this because there need be no boy or man constantly near it, in order to supply it with fur. One of the men in this room told me that if they had, instead of the present style of "mixing machines," these self-feeders, two boys only would be required where seven or eight are now employed.

The next room to be hygienically considered, is the "forming-room." Now, I venture to assert, that if you were to draw your conclusions as to the probable effect of the various kinds of exposure upon the health of the men who work in this room, from what you see as you first enter the apartment, you would say with emphasis, men can not long endure such treatment of themselves without having their health impaired. I think you would say this, because as you look along the line of "coners," you observe the fact that many of the men (in some shops) stand upon wet floors without any protection for their feet, their trousers being rolled up to the knee. The next thing you note is the long line of hot-water tanks, into which the men plunge (by means of a rack) the cones after they are removed from the "cone chambers." In performing this operation the water is splashed to some extent upon the operators, who with bared arms are constantly transferring the cones from the chamber to the bath, and vice versa, in this manner keeping their trousers wet so long as the work continues. You also observe that the temperature of the room is suffi-
REPORT OF THE BOARD OF HEALTH.

THE HYGIENE OF OCCUPATIONS.

No. 12. Aged 22; 4 years in the business; never had the “shakes,” has slight catarrh, and has had rheumatism; uses beer and tobacco.

No. 13. Aged 31; 2 years in the business; never had the “shakes”; health good; uses beer and tobacco.

No. 14. Aged 34; 9 months in the business; well; uses beer and tobacco.

No. 15. Aged 20; 5 years in the business; never had the “shakes”; feels perfectly well; uses beer and tobacco.

No. 16. Aged 43; 18 years in the business; has never had the “shakes” or any other malady; uses beer and tobacco.

No. 17. Aged 45; 2 years in the business; never had the “shakes”; has rheumatism; uses beer and tobacco.

No. 18. Aged 39; 1 year, 6 months in the business; no “shakes”; has neuralgia in face, due, he thinks, to wet feet; uses beer and tobacco.

No. 19. Aged 43; 2 years in the business; no “shakes”; feels quite well; uses beer and tobacco.

No. 20. Aged 29; 2 years in the business; never had the “shakes”; has slight catarrh, also rheumatism; uses beer and tobacco.

As the “wetters” work with the “coners,” it will be proper to classify them together, it will therefore be understood that the remainder of the list will refer only to the former class of workmen.

No. 22. Aged 37; 8 weeks in the business; is perfectly well; uses beer and tobacco.

No. 23. Aged 35; 2 years in the business; never had the “shakes”; feels quite well; uses beer and tobacco.

No. 24. Aged 18; 2 weeks in the business; well; uses beer and tobacco.

No. 25. Aged 28; 8 weeks in the business; perfectly well; uses beer and tobacco.

No. 26. Aged 32; 2 years in the business; never had the “shakes”; uses beer and tobacco.

No. 27. Aged 26; 15 years in the business; has “shakes,” catarrh and dyspepsia; uses beer and tobacco.

No. 28. Aged 33; 7 years in the business; never had the “shakes”; has rheumatism; uses beer and tobacco.
No. 29. Aged 41; 14 years in the business; well; uses beer and tobacco.

No. 30. Aged 42; 16 years in the business; never had the “shakes;” has rheumatism occasionally; uses tobacco.

No. 31. Aged 30; 15 years in the business; well; uses beer and tobacco.

No. 32. Aged 28; 8 years in the business; has the “shakes” and nasal catarrh; uses beer and tobacco.

No. 33. Aged 37; 15 years in the business; never had the “shakes;” has nasal catarrh; uses beer and tobacco.

No. 34. Aged 27; 3 years in the business; never had the “shakes;” has catarrh and dyspepsia; uses beer and tobacco.

No. 35. Aged 42; 25 years in the business; never had the “shakes;” has dilated veins in forearm, also rheumatism, which he attributes to standing on a damp floor; uses beer and tobacco.

No. 36. Aged 50; 20 years in the business; never had the “shakes;” but has the catarrh and rheumatism; uses beer and tobacco.

No. 37. Aged 54; 30 years in the business; never had the “shakes;” feels well; smokes, but uses no beer.

No. 38. Aged 41; 6 years in the business; has not had the “shakes;” but has had the rheumatism; uses beer and tobacco.

No. 39. Aged 29; 12 years in the business; has not had the “shakes;” but has the asthma; uses beer and tobacco.

No. 40. Aged 36; 17 years in the business; never had the “shakes;” but has had mercurial sore mouth.

No. 41. Aged 28; 8 years in the business; well.

No. 42. Aged 25; 2 years in the business; never had the “shakes;” but has bronchitis and rheumatism.

No. 43. Aged 30; 5 years in the business; never had the “shakes;” uses beer and tobacco.

No. 44. Aged 42; 9 months in the business; well; uses beer and tobacco.

No. 45. Aged 40; 3 years in the business; never had the “shakes;” uses beer and tobacco.

No. 46. Aged 20; 3 years in the business; never had the “shakes;” uses beer and tobacco.

No. 47. Aged 35; 16 years in the business; uses beer and tobacco.

No. 48. Aged 33; 12 years in the business; never had the “shakes;” has the catarrh and rheumatism.

THE HYGIENE OF OCCUPATIONS.

No. 49. Aged 30; 1 year in the business; has the “shakes” slightly; uses beer and tobacco.

No. 50. Aged 19; 6 years in the business; well; never had the “shakes;” uses beer and tobacco.

No. 51. Aged 38; 12 years in the business; has the “shakes,” catarrh and rheumatism; uses beer and tobacco.

In review we discover that of 51 cases, 11 have catarrh; 8 have rheumatism at present time, 1 has had it; 5 have the “shakes;” 1 has had them; 1 has asthma; 1 has had mercurial sore mouth; 1 has had bronchitis; 46 use stimulants and tobacco; 45 have escaped having the shakes.

We might, perhaps, expect to find more disease than is here shown to exist, for certainly the various kinds of exposure would justify such a belief; but might not the cases of rheumatism and catarrh be reduced in number if proper attention were paid to the protection of the feet and body during working hours? Some of the men told me that notwithstanding the water was hot, which is spilled upon the floor from the tanks, they often experience pain of a rheumatic character, after they have stood several days or weeks upon the floor which is dampened by it. The “hardeners” work at benches placed quite near the “coners” but they are not exposed to so much dampness. They are most liable to mercurial poisoning, because of repeatedly placing the hat bodies, which contain nitrate of mercury, upon their bare arms. Their testimony is as follows:

No. 1. Aged 22; 16 months in the business; never had the “shakes;” has catarrh; uses tobacco.

No. 2. Aged 33; 14 years in the business; never had the “shakes;” has catarrh and occasional rheumatism.

No. 3. Aged 49; 7 years in the business; never had the “shakes;” has the rheumatism.

No. 4. Aged 36; 14 years in business; has not had the “shakes;” uses beer and tobacco.

No. 5. Aged 26; 6 years in the business; never had the “shakes;” has pharyngeal catarrh; complains of dyspepsia.

No. 6. Aged 37; 14 years in the business; never had the “shakes;” has catarrh, both nasal and pharyngeal; has occasionally rheumatism; uses beer and tobacco.
No. 7. Aged 34; 14 years in the business; never had the "shakes," but has the nasal catarrh; has dyspepsia; uses beer and tobacco.

No. 8. Aged 38; 13 years in the business; has never had the "shakes," but has the catarrh; uses beer and tobacco.

No. 9. Aged 39; 14 years in the business; never had the "shakes;" has dyspepsia.

No. 10. Aged 34; 16 years in the business; never had the "shakes," but has the catarrh (nasal); has dyspepsia; uses tobacco.

No. 11. Aged 31; 7 years in the business; never had the "shakes;" health good; uses beer and tobacco.

No. 12. Aged 21; 2 years in the business; has not had the "shakes;" says the fur makes his nose dry; uses tobacco.

No. 13. Aged 66; 27 years in the business; has had the "shakes;" complains of rheumatism; uses beer and tobacco.

No. 14. Aged 30; 14 years in the business; has the "shakes," also catarrh, and occasional rheumatism; uses beer and tobacco.

No. 15. Aged 22; 7 years in the business; has not had the "shakes," but has the catarrh; uses tobacco.

No. 17. Aged 37; 10 years in the business; never had the "shakes;" has the catarrh; uses beer and tobacco.

No. 18. Aged 21; 9 years in the business; has not had the "shakes;" feels quite well.

No. 19. Aged 37; 13 years in the business; has not had the "shakes;" feels well.

No. 20. Aged 21; 2 years in the business; never had the "shakes;" says fur makes nose very dry; uses tobacco.

No. 21. Aged 66; 27 years in the business; has had the "shakes;" uses beer and tobacco.

No. 22. Aged 30; 14 years in the business; has slight "shakes" and catarrh, also occasional rheumatism; uses beer and tobacco.

No. 23. Aged 22; 7 years in the business; never had the "shakes;" has slight catarrh; uses tobacco.

No. 24. Aged 37; 10 years in the business; never had the "shakes;" has catarrh; uses beer and tobacco.

No. 25. Aged 21; 9 years in the business; well.

No. 26. Aged 37; 13 years in the business; well.

No. 27. Aged 41; 26 years in the business; has the "shakes" and catarrh; has been salivated.

No. 28. Aged 24; 5 years in the business; well; uses beer and tobacco.

No. 29. Aged 42; 18 years in the business; has the "shakes" and mercurial sore mouth; uses tobacco.

No. 30. Aged 54; 7 years in the business; has the "shakes" and has had sore mouth; has catarrh; uses beer and tobacco.

No. 31. Aged 37; 18 years in the business; has had the "shakes;" uses beer and tobacco.

Of this number 15 have the catarrh; 5 have the rheumatism; 5 have the shakes; 3 have had the shakes; 2 have had the mercurial sore mouth; 4 have the dyspepsia; 2 complain of dry nostrils; 14 use stimulants and tobacco; 7 use only tobacco; 10 use neither tobacco or stimulants.

Some of the men have very slight muscular tremors, which they do not regard as "shakes," and they also show a wasting of the muscles of the forearm, a point to which Dr. Dennis, of Newark, drew attention a few years ago (1878), in his report to the Board of Health. The only other operatives in this department are the "feeders" and "weighers." Twenty-seven "feeders" were questioned in regard to their health, and all but one claimed to be well. The one exception complained of catarrh. They stand upon elevated platforms, which are dry, and the fur, because of being placed in boxes just beside the revolving aprons, is easily placed thereon without much disturbance of its fibres, hence the air they inhale is not as dusty as it is in the mixing-room. Fourteen "weighers" were questioned, five of whom had catarrh. This is not surprising, as in putting the fur upon the scales it is a good deal disturbed, much of the "dust" being thrown into the air about the individual, and introduced into the nose and throat.

Perhaps it will be wise to refer to the four additional hands employed in the former mills, namely, the "wriinger-out boy," the "bailer," the men who attends to the "devil machine," and the "shaker." The "wriinger-out boy" said he never felt well, had constant headache and very poor appetite. The men who worked at the "devil machine" did not complain of any disease. The only reason I could assign was, that they had been only a short time at the business; for how a man can stand several hours every day in such a dense cloud of dust and not have serious disease of the respiratory organs, is a mystery. The "bailer" and "shaker" did not complain of ill-health.
The hat-bodies, after they leave the forming mill, go to the "sizing-room," where they are taken by men called "sizers" or "makers," whose business it is to dip them into hot water, acidulated with sulphuric acid, and then roll them back and forth upon an inclined plane, in order to make the felt contract till it shall be reduced to the proper size. They are next run through a sizing machine, which gives them still greater compactness. In this room the vapor of the hot water is so dense that one can scarcely see the floor or the passage-way between the kettles. The floor, as a rule, is wet—actually has puddles of water at many places—so that as you walk from one group of men to another, you get your feet wet in a few moments. This evil might be remedied by having a "grating" placed over the floor, at least around the kettles where the men stand while at work. The hot-water vapor could all be removed from the room by means of exhaust pipes with funnel-shaped openings, placed over the kettles, and this precaution ought to be insisted upon, for such an apparatus can be easily made and put into position, and the expense would not be great. This hot-water vapor of course deposits itself upon every object in the room (men included) and upon every part of the room; it then drops upon the men at work, giving them a shower-bath from the time they enter till they leave the apartment. In winter this is a serious matter, for with wet clothes, and exposure to sudden changes of temperature, they are very apt to develop either rheumatism or other serious affections. Some of the men wear no shoes or stockings, and those who do, unless they be rubber, have their feet constantly wet. It is true, however, that many of the men wear rubber shoes or boots, also rubber aprons, thus protecting themselves, so far as their feet and lower limbs are concerned. I have also been told that the men (most of them) change their clothing after they finish work in the sizing-room, but they "change" in a room not thoroughly heated, so that the exposure there is attended with some risk. In order to determine what diseases are most common among these men, consult the following table:
<table>
<thead>
<tr>
<th>Number</th>
<th>Age</th>
<th>Time in the business</th>
<th>Catarrh</th>
<th>Cough</th>
<th>Rheumatism</th>
<th>Shakes</th>
<th>Post</th>
<th>Present</th>
<th>Drippen</th>
<th>Mucous & Sore Mouth</th>
<th>Cod.</th>
<th>Stimulants</th>
<th>Tobacco</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>20</td>
<td>7 months</td>
<td>....</td>
</tr>
<tr>
<td>149</td>
<td>22</td>
<td>4 months</td>
<td>....</td>
</tr>
<tr>
<td>150</td>
<td>24</td>
<td>11 months</td>
<td>....</td>
</tr>
<tr>
<td>151</td>
<td>26</td>
<td>18 months</td>
<td>....</td>
</tr>
<tr>
<td>152</td>
<td>28</td>
<td>25 months</td>
<td>....</td>
</tr>
<tr>
<td>153</td>
<td>30</td>
<td>32 years</td>
<td>....</td>
</tr>
<tr>
<td>154</td>
<td>32</td>
<td>39 years</td>
<td>....</td>
</tr>
<tr>
<td>155</td>
<td>34</td>
<td>46 years</td>
<td>....</td>
</tr>
<tr>
<td>156</td>
<td>36</td>
<td>53 years</td>
<td>....</td>
</tr>
<tr>
<td>157</td>
<td>38</td>
<td>60 years</td>
<td>....</td>
</tr>
</tbody>
</table>

THE HYGIENE OF OCCUPATIONS.

<table>
<thead>
<tr>
<th>Number</th>
<th>Age</th>
<th>Time in the business</th>
<th>Catarrh</th>
<th>Cough</th>
<th>Rheumatism</th>
<th>Shakes</th>
<th>Post</th>
<th>Present</th>
<th>Drippen</th>
<th>Mucous & Sore Mouth</th>
<th>Cod.</th>
<th>Stimulants</th>
<th>Tobacco</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>19</td>
<td>1 year</td>
<td>....</td>
</tr>
<tr>
<td>159</td>
<td>21</td>
<td>2 years</td>
<td>....</td>
</tr>
<tr>
<td>160</td>
<td>23</td>
<td>3 years</td>
<td>....</td>
</tr>
<tr>
<td>161</td>
<td>25</td>
<td>4 years</td>
<td>....</td>
</tr>
<tr>
<td>162</td>
<td>27</td>
<td>5 years</td>
<td>....</td>
</tr>
<tr>
<td>163</td>
<td>29</td>
<td>6 years</td>
<td>....</td>
</tr>
<tr>
<td>164</td>
<td>31</td>
<td>7 years</td>
<td>....</td>
</tr>
<tr>
<td>165</td>
<td>33</td>
<td>8 years</td>
<td>....</td>
</tr>
<tr>
<td>166</td>
<td>35</td>
<td>9 years</td>
<td>....</td>
</tr>
<tr>
<td>167</td>
<td>37</td>
<td>10 years</td>
<td>....</td>
</tr>
<tr>
<td>168</td>
<td>39</td>
<td>11 years</td>
<td>....</td>
</tr>
<tr>
<td>169</td>
<td>41</td>
<td>12 years</td>
<td>....</td>
</tr>
<tr>
<td>170</td>
<td>43</td>
<td>13 years</td>
<td>....</td>
</tr>
<tr>
<td>171</td>
<td>45</td>
<td>14 years</td>
<td>....</td>
</tr>
<tr>
<td>172</td>
<td>47</td>
<td>15 years</td>
<td>....</td>
</tr>
<tr>
<td>173</td>
<td>49</td>
<td>16 years</td>
<td>....</td>
</tr>
<tr>
<td>174</td>
<td>51</td>
<td>17 years</td>
<td>....</td>
</tr>
<tr>
<td>175</td>
<td>53</td>
<td>18 years</td>
<td>....</td>
</tr>
<tr>
<td>176</td>
<td>55</td>
<td>19 years</td>
<td>....</td>
</tr>
<tr>
<td>177</td>
<td>57</td>
<td>20 years</td>
<td>....</td>
</tr>
<tr>
<td>178</td>
<td>59</td>
<td>21 years</td>
<td>....</td>
</tr>
<tr>
<td>179</td>
<td>61</td>
<td>22 years</td>
<td>....</td>
</tr>
<tr>
<td>180</td>
<td>63</td>
<td>23 years</td>
<td>....</td>
</tr>
</tbody>
</table>
are exposed to the hot vapor, which they are compelled to inhale, for in order to moisten the hats they dip them into small hot-water tanks which are placed just beside them, and in doing this they bend directly over the tank, inhaling large quantities of the vapor. There is also some danger of mercurial poisoning from handling the wet hats.

Eighteen "blockers" were questioned, and of this number 4 have catarrh; 3 have rheumatism; 3 have the "shakes;" 1 has had the "shakes;" 1 has a cough; 1 has frequent "colds;" 11 use stimulants and tobacco.

From the "blockers," hands they go to the "drying-room," where they are exposed to a temperature of about 170° Fahrenheit. Boys are generally employed to attend to this work, and they do not appear to be impaired in health. They do not look "rosy," but they certainly are, as a class, free from any disease. This may be due to the fact that they spend much of their time outside the drying-room, and do not remain long in this department, but soon seek promotion in order to secure higher wages.

From the drying-room the hats go to the "pouncers," who put the hat-bodies upon revolving blocks and cleanse them, by means of emery, of the rough fur which bristles all over the hat when it first comes from the "drying-room."

In this room there is considerable dust, which finds its way into the nostrils, throats and lungs of the operatives. It should be said that a suction tube is generally placed near each block, in order to provide for the escape of as much of the dust as possible, but notwithstanding this precaution, some of the dust escapes into the room, and is inhaled by the men.

Twenty-seven "pouncers" were questioned, and of this number 2 have catarrh; 4 have cough; 3 have the "shakes;" 2 have had the "shakes;" 1 has a poisoned face (mercurial); 14 use stimulants and tobacco.

The hats are now ready for the "finishing-room." It is in this room more than in any other, perhaps, that the health of the operatives is most seriously impaired. In the first place, these rooms are, as a rule, very poorly ventilated. This lack of ventilation leads to the accumulation of considerable fine dust, and prevents the escape of air which contains the mercurialized vapor which rises from the hats while they are being pressed with the hot irons used for that purpose. When the "finishers" take the hats, they place them upon stationary or movable
blocks, and sand-paper and iron them off smoothly. In doing this, they bend over the blocks, bringing the face very close to the iron or the sand-paper, as the case may be. In this manner they place themselves in the best possible position to inhale either the volatilized mercury or the fine fur fibres. I have learned that there is a vast difference between a high finishing-room and a low one, as regards the health of the men who work in them. The "shakes" are much more frequent in the low than in the high finishing-rooms. This is due to the poorer ventilation of the rooms on the ground floor. The dust in many of these rooms is imperceptible as it exists in the air (at least in some of the rooms), but if you will go to the window, or the bench, you will find a deposit of dust sufficiently thick to make it possible to trace your name in it. In certain finishing-rooms even the air is made cloudy by the dust which is detached from the hats with the sand-paper.

It is this dust which enters the nose, throat and lungs of the men, and causes primarily, only a slight irritation of the mucous membrane, but secondarily, in many instances, a consumptive process. The danger arising from exposure to the volatilized mercury is also apparently very great, for as the men use the irons, they bend very close to the blocks in order to exert as much pressure as possible upon the hats. As the hats are moistened before being ironed, they are, of course, in just the condition to part with a portion of the mercury which they contain, for the moment the hot iron touches the felt, the mercury, or a portion of it, passes off in vapor, and is very apt to be inhaled by the ironer. But I have not discovered that mercurial poisoning is common at the present day, on the other hand, it is uncommon, so far as my observation instructs me. It seems to be the fine fur dust which does most permanent harm. Some of the men told me they could expectorate black dust one or two weeks after stopping work. It may be true that the small percentage of nitrate of mercury which these fibres contain acts injuriously upon the lungs, causing, or helping to cause ultimately, a phthisical process. My own belief is, that the damage to the respiratory organs is the result of the mechanical irritation produced by the fur fibres. As a matter of fact, the testimony of 222 finishers will show what diseases they are especially prone to, viz.:

Of those recently visited, 64 have catarrh; 42 have cough; 17 have the "shakes;" 16 have had the "shakes;" 15 have rheumatism; 9 have had mercurial sore mouth; 7 have the sore mouth at present time; 7 have bronchitis; 2 had sore mouth when working in low shops; 4 have chest pains; 4 have phthisis; 4 have had catarrh; 1 has dyspepsia; 1 has insomnia; 1 has asthma; 127 use stimulants and tobacco.

It is plainly shown by this list that the diseases of the organs of respiration are far more common than is generally supposed to be the case, and more common than any other disease. It is likewise the most fatal disease the hatters suffer from, most dangerous because it is so comparatively insidious. In England, these operatives wear cloths over their nostrils to prevent the dust entering their lungs. Certainly some simple respirator could be worn, and one danger averted. I have had hatters tell me that when in the open air for several consecutive weeks or months, the throat, lung or nasal irritation would frequently disappear, but as soon as they began work in the finishing-room the old irritation would return.

The hats now pass to the "trimmers" (usually girls), who attach the band, braid and lining to the hat. These girls, many of them, appear pale, but very few of their number complain of actual disease. Much might be done to improve the ventilation of the rooms in which these girls work. In some of them all the windows were closed and the temperature so high as to make one uncomfortable, the girls volunteering the statement that they often longed for plenty of fresh air, admitted in such a manner as not to produce a draught. I made inquiry of 113 "trimmers" concerning their health with the following result:

Twenty-three had catarrh; 3 had cough; 1 complained of poor health; 1 complained of insomnia; 1 complained of weak lungs.

The "flangers" now take the hats, place them in the mould and put on them bags of hot sand. One would think, perhaps, that this operation is unattended by danger, but such is not quite true, although the danger exists in a minor degree. The men told me that, occasionally, "shakes" occur in this department. Of 6 flangers questioned, 1 had the "shakes;" and 2 were affected with the catarrh.

The "packers" were asked if they were ever affected in any manner by handling the hats. They said that occasionally a man would get the "shakes." We have thus far from statistics given in this paper:

1. That the most common diseases of the "mixers" and "blowers" are catarrh and rheumatism.
2. That the most common diseases of the "coners" and "wetters" are catarrh, rheumatism and "shakes."
3. That the most common diseases of the "hardeners" are catarrh, rheumatism and "shakes."
4. That the most common diseases of the "sizers" or "makers" are catarrh, rheumatism, pulmonary affections and "shakes."
5. That the most common diseases of the "blockers" are catarrh, rheumatism and the "shakes."
6. That the most common diseases of the "pouncers" are catarrh, pulmonary affections and "shakes."
7. That the most common diseases of the "finishers" are catarrh, pulmonary affections, "shakes," rheumatism and mercurial sore mouth.

That the most common disease of the "trimmers" is catarrh.

We have also learned that the most common of all the diseases of the hatters, while they are at work at their trade, is catarrhal inflammation of some portion of the respiratory apparatus. This I regard as a very significant fact, especially when it is coupled with the fact that the most frequent cause of death among hatters is phthisis pulmonalis. Before closing this paper, let me ask you to consider the statistics which I have collected, showing the various causes of death of hatters, working in all the departments of the trade.

Total number of deaths of hatters in Newark and Orange (as indicated by the death certificates) since 1873, 500.

Died of pulmonary phthisis..........................265, or 53 per cent.
Died of pneumonia......................................67
Died of chronic bronchitis.............................9
Died of pulmonary edema................................1
Died of pulmonary hemorrhage..............................4
Died of pulmonary congestion..............................1
Died of asthma..2
Died of pneuma-thorax......................................1

Making a total of 331 cases of all forms of lung lesions, or 66.2 per cent.

The other causes of death in their order of frequency are as follows:

Nephritis..24
Heart disease...24
Injuries ..18
Apollepsy..15

The remaining diseases occur very infrequently; they are such maladies as meningitis, cystitis, enlarged prostate, chronic myelitis, acute melancholia, etc.

Through the kindness of Mr. Thos. F. Foster, I have been able to secure from W. H. Judson, of Bethel, Conn., the following statistics, which show the most frequent causes of death among the hatters in that town.

Total number of deaths reported, 89.

Died of phthisis..........................33, or 37.7 per cent.
Died of pneumonia.................................7
Died of heart disease...............................7
Died of paralyis...5
Died of apopplexy.......................................3
Died of typhoid fever..................................2

Here again there is a large excess of phthisis over all other forms of disease.

The statistics kindly sent from Danbury, Conn., by Mr. Edmund Tweedy, as follows:

Total number of deaths reported, 76.

Died of pulmonary phthisis..........................38, or 50 per cent.
Died of pneumonia.......................................3
Died of meningitis.......................................3
Died of apopplexy.......................................3
Died of pulmonary hemorrhage..........................2
Died of typhoid fever...................................2
Died of heart disease.................................6

The remaining diseases are such as abscess of ear, cancer, dropsy, syphilis, etc., etc.

Here we also observe a preponderance of phthisical cases.

Mr. John B. Stetson sends me the record of 26 deaths, all of which have occurred among his own employees during the last four or five years.

Total number of deaths, 26.
Died of consumption..........................10, or 34.2 per cent.
Died of typhoid pneumonia...................... 5
Died of alcoholism.................................. 1
Died of bronchitis.................................. 1
Died of typhoid fever.............................. 1
Died of heart disease............................. 1
Died of abscess................................... 1
Died of general debility.......................... 1
Died of meningitis................................. 1
Accidental death.................................. 1
Complication of diseases.......................... 2

Total number of deaths reported by secretaries of various hatters' societies in other parts of the country, 31.

Died of pulmonary phthisis.........................29, or 93.5 per cent.

We have then a sum total of 722 deaths; of that number there have died of phthisis, 375, or 51.8 per cent. Of all forms of pulmonary lesions there were 459, or 63.5 per cent.

It is doubtful if any other trade will show such an excess of deaths due to pulmonary phthisis, and should we not, with these appalling facts in our possession, endeavor to prevent the development of this terrible disease—consumption—in the hatters, and put forth special effort to stay its progress in those cases where it has already begun its destructive work. The average life of hatters does not exceed forty years.

Note.—Consult N. J. State Board of Health reports also, as follows:
Article of Laban Dennis, M.D., 2d report, 1878.
Trades and Occupations, 3d report, 1879, pages 13 and 126.

AN INQUIRY INTO THE CAUSES OF DISEASE AMONG WORKERS IN SILK, FLAX AND JUTE.

Preliminary to what is to be said on the subject under discussion, it would be well to remark that these notes are not intended to be exhaustive, but the purpose is merely to glance at the main points

and to leave for the future a more elaborate investigation of the diseases common among workers in textiles.

The difficulties that present themselves when one attempts to study trade diseases in this State or country are many, for the vital statistics at our disposal are meagre and imperfect, and very often contain no information of value to the student of this class of diseases. For example, the certificate of death which states that a certain person was a weaver and died of phthisis does not aid us very much. If the record had stated what kind of textile the person worked in, whether wool, silk, cotton or flax, valuable assistance would be given. More important still would be the record if it showed how long the person had worked at that particular trade, how rapid had been the progress of the disease, and what form of phthisis was the cause of death, whether acquired or hereditary. A record thus made up would put us in possession of facts of value and would enable us in a short time to tell what the trade diseases really are.

No more valuable service could be rendered to the State than the careful compiling of accurate statistics concerning the causes of disease among operatives, and the records now being kept in this State will form a good foundation for future sanitarians to build upon.

In considering the diseases incident to particular trades, it is always necessary to exclude those factors common to all trades in that class; thus, in studying the diseases pertaining to factory operatives we must set aside all those causes universal in that class, such as bad ventilation, injuries by machinery and the like, and bring into review only those factors that operate in the special branch of a trade that we are examining. We might, for instance, say that the diseases common to silk weavers, cotton and flax spinners, machinists, and all those working in-doors were induced by bad ventilation or imperfect heating, but this would not explain all, for each trade mentioned has its own train of troubles not common to others, hence we must eliminate the troubles incident to in-door occupations and study the diseases induced by the special trade under discussion.

We must, also, exclude those diseases caused or induced by bad sanitary surroundings at the home of the operative, for such ailments are frequent in all unsanitary localities.

The scope of our study is thus narrowed down to the diseases caused solely by the particular trade, or branch of trade, at which the person works. We shall, therefore, confine our attention to the dis-
cases induced by the processes used in the manufacture of silk, flax and jute, ignoring completely all troubles due to factory life and its surroundings.

SILK.

The processes used in the manufacture of silk may be briefly summarized as follows, disregarding all technical terms:

The raw or crude silk is first boiled in soapy water to remove the glutinous material that coats the fibre. The cleansed or soft silk is reeled or spun and then dyed. Then it is woven into ribbons or other fabrics. With the exception of the dyeing, all the processes followed are cleanly, and at no stage of the spinning, reeling or weaving, is the operative subjected to any disagreeable or unhealthy dust or vapor.

The process of dyeing, being common to all textile trades, needs only a brief allusion here, for the diseases or inconveniences caused by the occupation of dyeing are not distinctly a part of the silk business. Suffice it to say that bronchial, pulmonary and rheumatic affections are induced by the hot, moist atmosphere of the dye-house. The dyers are often surrounded with an atmosphere similar to that in a Russian bath. Besides this, the floors of the place are of stone or of rough boards, and often covered with water. The majority of dyers now avoid the troubles, incident to wet feet, by using wooden shoes or shoes with thick wooden soles, similar to the sabots so often seen in France and Germany. Much of the inconvenience due to the condition of the air, could be avoided by working blowers to force out the air surcharged with steam or moisture, and to replace it with dry, pure air. Dyers being compelled to keep their hands in the vats containing solutions of dye-stuffs, suffer more or less with dermatitis, limited to the hands and arms; this inflammation varies very much in degree.

Taken as a whole, the trade of silk operatives may be considered a healthful one, and devoid of the dangers common to many of the textile trades.

The work is especially fitted to the capabilities of women and girls, it being generally light and cleanly. Nearly two-thirds of the work done in ribbon and throwing establishments is performed by women.

If the factories could be built and maintained so as to be well lighted, heated and ventilated, and if due regard was paid to the sanitary requirements for factory life, the silk trade would be one that the sanitarian could recommend as a healthful one.

THE HYGIENE OF OCCUPATIONS.

The surroundings of the operatives in the factories is much better than those of people who carry on the business in dwelling-houses, as is often the case in Paterson and other towns where many silk weavers are employed. Knowing as we do the condition of the average house occupied by working people, we are forced to the opinion that no trade or occupation, like that of weaver or spinner, should be carried on in a tenement or other dwelling-house. The rooms in these houses are poorly ventilated and improperly lighted, and the operative is placed at a great disadvantage; hence, we should discourage the practice of turning dwelling-houses into factories. In Paterson there are hundreds of persons carrying on various branches of the silk business in their homes, and the loom or reel is set up in an already overcrowded kitchen or living-room. The operative, in these cases, is not only subjected to the unhealthful surroundings of the house, but is constantly tempted to carry on the work at unseasonable hours.

FLAX AND JUTE.

We now turn from the consideration of a trade which, when properly managed, is one of the most healthful, to the study of the condition of workers in flax and jute, and the contrast between the two trades will be noticed immediately.

The methods of manufacture and the effects upon the operative being the same with both flax and jute, they have, for convenience, been grouped together.

The scope of our review adopted at the outset will be followed, and the effect of factory life upon the worker will not be considered, our attention being devoted to the diseases caused by the special processes.

The method of manufacture is about as follows: The flax or jute is received in hanks, in its crude state, and is first "hackled" or drawn through a machine for the purpose of removing the seeds, lumps and other inequalities; also for the purpose of arranging the fibres in a parallel direction. The material is then reeled, spun or twisted into threads or cords of different degrees of thickness.

The details of these processes now claim our attention.

Hackling.—The hanks of flax or jute are drawn by the operative through combs made of long steel spikes, about one thirty-second of an inch in diameter, the objects being to arrange the fibres in a par-
allel direction, to split the fibre to as small a diameter as possible and to remove short threads and dirt. This work has always been done by hand, and no satisfactory machine has as yet been invented to supersede manual labor. This process has long been recognized as a very unhealthful one, and very few hacklers live to advanced life. In talking with men old in the business, the remark is often made that "they see nothing very bad in the occupation," and they point to a fellow-worker, here and there, who has lived long and has enjoyed fair health, although a hackler for twenty or thirty years. But the truth can only be ascertained by asking the question: "Out of twenty, thirty or fifty men who started in this business with you, how many of them are now alive, and how many of them have died of lung diseases or have given up because of the extreme danger?" A direct question like this brings the information that only from fifteen to eighteen out of a hundred survive, or enjoy good health at the age of forty. Now, what is the cause of this great mortality among hacklers? One has but to enter the hackling room and remain there a few moments, to derive the necessary information. The air is loaded with dust, made up of dirt from the flax or jute and minute fibres, and a breath cannot be taken without drawing into the lungs large quantities of this fine and irritating dust. A person entering one of these rooms from the fresh outside air is almost immediately seized with paroxysms of coughing, and for hours after returning to the ordinary atmosphere, the sputum is streaked with the particles of dust that have been inhaled.

Before considering the diseases caused by this dust, we will examine other departments of the flax mill.

Spinning.—The same condition of affairs obtains in the spinning room as we have seen in the hackling room. The air is loaded with a very fine dust, but the quantity is not as great as in the room where the hackling is done. Inspection of the machinery, the floors and walls of the room and the projections around the doors and windows reveals collections of this light and irritating dust, while the hair and clothing of the operatives are covered with the same material.

Enough has been said to indicate what the results are that follow the continuous breathing of this dust-laden atmosphere. Newsholme, in his "Manual of Public Health," sums up in a few words the verdict of the sanitarian on the occupation of flax-workers. He says: "Hemp and flax dressers inhale a dust which is peculiarly irritating; and so fatal is the result that if a girl of eighteen commences with this work, and is regularly employed, she nearly always dies of consumption before reaching the age of thirty years."

It is very difficult to obtain from operatives an opinion as to the healthfulness of their trade, and we are often met with misleading or ambiguous replies. This trait of character is very noticeable when questioning flax-spinners, and we are answered that the trade is a healthy one, or we are told to look at the robust condition of the operatives who are engaged in the work. A somewhat casual study, however, soon informs us that the girls and women we see at the spindles are but the survivors of many who have died of disease induced by the trade.

It seems hardly necessary to go into any discussion of the reason why this trade is so unhealthful. Suffice it to say that the constant inhalation of irritating dust soon sets up a pathological process in the lungs, and this may result in a broncho-pneumonia running into destruction of the lung tissue—a group of processes classed under the general term, phthisis—or the irritating material acting as a foreign body in the lungs may start a form of inflammation which leads to an increase in connective tissue—pulmonary cirrhosis—which finally ends in destruction—necrosis—of the pulmonary tissue. The course of these two processes is very different, one being rapid, the other very protracted.

Knowing, as we now do, the cause of the great mortality among workers in flax and jute, what can be done to remove this cause and prevent disease? As there is prominently but the one factor of ill-health, the problem seems easy of solution, and is so theoretically, but practically there are many impediments to the successful management of a proper scheme. Fans so arranged as to draw the air from the rooms are employed, and if large enough and well adjusted much of the dust can be removed. But the trouble is they are, as a rule, not large enough and but imperfectly purify the air. It seems to the writer that to be successful the exhaust fans should be adjusted near to the hackler's bench or near the spinning frame, so that the dust shall be drawn into ducts as soon as it is thrown off. Where the fans are placed in one end of a room, the dust has to traverse the whole length of the room before it is removed and the air is only imperfectly purified, whereas if the ducts or pipes that lead to the fans were placed immediately over the source of the dust it would not enter the
air of the apartment, but would be rapidly and perfectly carried to the outside. This close application of exhaust ducts is employed over grindstones to remove the dust in knife-grinding and other processes where fine metallic particles are thrown off.

Where these fans may not be applied the operatives should wear masks or other forms of air-filters over the mouth and nostrils, so arranged that the dust is retained in a sponge or other filtering material fixed in the mask.

Wet Spinning.—Another process employed in flax factories remains to be described, that of wet spinning.

When the twine or thread has been spun in the ordinary way it is next taken to the rooms where peculiar spinning frames are set up; on these the thread is kept constantly damp by means of hot water applied in reservoirs that are adjusted to the frames. These reservoirs are partly filled with water, and steam pipes passing through it maintain it at a temperature from 200° to 212° Fah. The rooms where this process is carried on, instead of being filled with dust, contain an atmosphere loaded with moisture, and this, collecting and condensing on the ceilings and walls, drops like a fine mist over the operatives, so that they are subjected to a vapor bath at all times. The floors in these rooms are of stone, and the workers to save their shoes, stand in their bare feet. The temperature of the wet spinning-room is always high; hence, in the summer, the women are compelled to work in a tropical climate, while in the winter the great contrast between the inside and outside air is provocative of bronchial and other catarrhal affections.

Besides these diseases the constant dampness is a frequent cause of rheumatism, both inflammatory and sub-acute.

It is difficult to remedy the defects in these rooms, and we can only suggest the trial of methods that will introduce large volumes of warm air, and at the same time remove the moisture.

The contrast between the two trades under review—silk and flax spinning—is very great. While one may be considered generally healthful, the other has always been deemed to be very dangerous, but more study is required before we can arrive at positive conclusions.

As was intimated in the beginning, these notes are merely intended as memoranda for future investigations. If we have clearly outlined the salient features we may hope that study hereafter will reveal more distinctly the causes of trade diseases, and enable us to suggest remedies therefor.

DISEASES OCCURRING IN MANUFACTURE OF RUBBER BOOTS AND SHOES.

There are in the Eastern and Middle States some eight or ten large rubber boot and shoe factories, and more than that number of smaller ones, employing an aggregate of perhaps 10,000 hands, and making from thirty to forty million pairs of boots and shoes annually. These employes comprise men, women and children.

The process of manufacture in general is as follows: The rubber, or gum, as it is called, imported from various tropical countries, is of several grades, the best coming from Brazil, and known as Para gum. The difference in grade is determined chiefly by the percentage of admixture with stones, dirt and other foreign substances, which varies from five to fifty per cent. or more. The gum is first "washed," to free it from the foreign material. This washing consists in being repeatedly ground between iron rollers, while a stream of water falls upon it from a height of a few inches. After this operation the gum appears in brownish sheets about the size of sheep skins, averaging, perhaps, a quarter of an inch in thickness, but very uneven, thickly and irregularly dentated, as if it had been chewed by some carnivorous animal. It is then dried by being hung for several hours in a moderately warm room, frequently the attic of the factory, where, in summer, the sun upon the roof affords sufficient heat. In winter some artificial heat is necessary; but this is an operation of little delicacy, and the degree of heat is not accurately determined. The sheets next go to a room popularly known as the "black mill," on account of the dirt and dust produced there. Here it is again ground by being passed between heated iron rollers, and this process is repeated until it becomes "fine," that is, it comes out in a thin, smooth sheet, the folds of which adhere together, forming a thick wad or roll. It is now "compounded," that is, it is mixed with varying proportions, according to the quality of goods to be manufactured, of litharge, white lead, whiting, resin, lamblack and sulphur. Another set of rollers receives and works it over until these ingredients are thoroughly incorporated with it.

The rubber thus prepared is distributed according to its quality and destination among various sets of rollers. Some of these receive, with the rubber, pieces of muslin, flannel or other cloth, and the pressure is such that the rubber is not only spread upon one surface of the
cloth in a continuous sheet, but is at the same time forced into the texture of the latter. This is afterward cut by machinery into the shapes necessary to form the inside of the boots and shoes. Other rollers are engraved so that the rubber which passes between them comes out stamped with the various figures seen on the outside of the manufactured goods. These stamped sheets are not pressed into cloth, but as they come from the rollers, are laid on muslin-covered frames, from which they are carefully transferred to the cutting tables, where they are cut by hand, with sharp-pointed knives, into the required shapes. The scraps left from the cuttings are returned to the rollers to be worked over into new sheets. Scraps from the rubber designed for the outside parts, containing no cloth, are, after being worked over, as good as fresh material, and are used as such. Scraps containing cloth, however, form a poorer quality of rubber, which is used for “filling” and for making boot heels. For the latter purpose, these “rag” scraps are ground and rolled into sheets, and these sheets, while still warm and consequently adhesive from the heat of the rollers, are made into rolls about three inches in diameter. With a handsaw, the rolls are cut into sections an inch or so in thickness, and these being placed in heated dies under a powerful press, are stamped into proper shape. A similar process is used to make the little projection on the back of the so-called “self-acting” rubber shoe.

The several parts of the boot or shoe, thus prepared, are called collectively “stock.” This goes now to the boot-rooms and shoe-rooms, where it is made up by hand, piece upon piece, like one patch over another, being pressed upon a wooden last until the boot or shoe is completed. Before applying the pieces, their borders, and in some cases entire surfaces, are brushed over with a cement made by dissolving rubber in naphtha, but the main reliance in securing perfect adhesion between the inner and outer parts is in laying them accurately in place, and pressing them tightly together so as to exclude every particle of air. In doing this work, the last is held much of the time against the pit of the stomach, and the pressure on that point is so considerable that most of the operatives wear shields to protect, in a measure, the abdominal muscle and internal organs. Boot heels, after being cemented and laid in position, are made firm by a sharp blow of a mallet.

The manufactured goods, still upon the lasts, are placed upon iron racks, furnished with grooved wheels, and running upon iron rails laid in the floor. When loaded, these racks weigh several hundred pounds each. Most of the goods now go to the varnishing-room, where they are taken from the racks and brushed over with a mixture of linseed oil, naphtha and sugar of lead. They are then replaced upon the racks, and with a few that are not varnished, go into the ovens, where they are kept at a temperature of about 275° Fahrenheit for several hours. This is called baking or vulcanizing. The ovens are then opened, and as soon as the racks are cooled sufficiently to handle they are wheeled back to the boot and shoe rooms and their contents redistributed to the makers, who now remove the boots and shoes from the lasts.

The goods are now taken to the packing-room. The boots pass through the hands of the trimmers, who cut off neatly a portion of lining that in making has been allowed to project above the top of the boot. The necessary marks of the different sizes and varieties of goods are then made with stencil plate and brush upon the soles, the marking material being a paste of litharge, gum arabic and water. They are now strung together and packed in boxes for shipment.

Connected with the larger boot and shoe factories are box-making departments, which differ in no essential respects from the box factories of other shops. There are also engineers, firemen, teamsters, etc., whose occupations, though necessary to the manufacture of rubber goods, are not especially affected by the character of that manufacture and, therefore, call for no particular comment here.

The largest element of danger to health in this industry is the large quantity of lead used in compounding. From six to twelve pounds of litharge and white lead are added to every twenty-four pounds of gum. The object of this is twofold, to dry the rubber and to make weight. It is said that no other material that has yet been used can so well subserv the first purpose, but a much smaller quantity would be sufficient were it not for a popular idea that the heavier a rubber boot or shoe is the more pure gum it contains and, therefore, the better is its quality. The fact is nearly the reverse, but so long as the market demands extra weight, manufacturers will use extra quantities of lead, for the cost of a pound of litharge or white lead is scarcely a tenth of the cost of a pound of pure gum. The best grade of goods are stamped “pure gum,” and contain less lead than others, but even these contain a large quantity, and such a thing as manufactured goods of really pure gum is unknown, because impossible. If the
public can be educated not to demand mere weight, the first step toward abating the evil will be gained. Then, and not before, it will be in order to seek for some substance that, itself innocuous, may take the place of lead as a drier in the compounding. The sugar of lead in the varnish is said to be used entirely for its drying qualities. Formerly it was not used, and the goods, after baking, were allowed to stand for several days before being boxed, but the custom of packing them immediately after finishing has made it necessary. In cool weather, comparatively little of it is used; in warm weather, more.

The persons liable to be injuriously affected by the various forms of lead used in rubber manufacture, are all who are directly engaged in that manufacture, from the time of compounding until the goods are packed for shipment. Those who are most apt to suffer, however, are the boot and shoe makers, the bakers and varnishers. The effects include, in different instances, all the manifestations of chronic lead-poisoning commonly known. The graver forms are comparatively rare, but wrist-drop and lead-colle are not infrequent, constipation is proverbially common, and the blue line upon the gums is almost universal among those who have worked for several years at the business.

The conditions under which the work must be done add to the danger of lead-poisoning. This is especially true in the boot and shoe rooms. In these rooms the operatives stand or sit at long tables. The bootmakers are generally men and always stand. The shoemakers, usually women and children, sometimes sit, but more often stand. The bulk of the manufactured goods and the variety of motions necessary in making, involves a necessity for considerable room at the tables, so that the number of cubic feet of air space to each operative is generally much more than the minimum requirement for health in well ventilated rooms. But these rooms are often not well ventilated. A current of air upon the rubber impairs its adhesiveness, and the slightest moisture is even worse. Consequently, very little ventilation is allowed, and during the moist, hot days of summer, in particular, the windows are kept carefully closed. It is at this season that the greatest number of cases of lead-poisoning occur.

The want of proper ventilation and the heat are, in themselves, frequent sources of impairment of health, and it is not uncommon for operatives, especially girls at the period when their development makes

the strongest demand upon their environment, to break down from these causes independent of any influence from the materials used in their work. On an August afternoon when, about 2 o'clock, the racks come in loaded with boots or shoes hot from the ovens, with windows closed, the heat of the room becomes almost unbearable.

Perhaps the most common complaint of operatives, as to conditions supposed to impair health, is in regard to the smell of the naphtha used in the cement. In some cases it undoubtedly causes headache and nausea, impairs the appetite and interferes with digestion, but much of the ill effect commonly attributed to it is doubtless due to other causes already mentioned.

The pressure of the last against the pit of the stomach in many instances causes soreness of the muscles, congestion of one or more of the abdominal organs, indigestion or dyspepsia. A shield of leather or of some other material, worn over the abdomen, prevents these effects in part, but even this protection is sometimes insufficient, and it frequently happens that boot or shoe makers have to leave the factory on account of troubles so induced.

Like other industries involving the use of much machinery, this has a considerable number of accidents. Each pair of rollers in the black mill is attended by one or two men, or in some factories it may be by a man and a boy. It is their business to watch the rubber, loosen it from the rollers when it sticks, and keep it passing through in regular quantity. The rubber is sticky, and sometimes it happens that, through carelessness, a hand or arm is drawn between the rollers. Maimed men are not uncommon around rubber factories. Another accident that is quite common, though generally much less serious, is the crushing of the foot by a moving rack, as some person is crossing the track in the shoe or boot room, or in the packing-room. Children are the most frequent sufferers from this accident.

An accident of a different character is liable to occur in the making of varnish. On account of the danger attaching to this operation, it is commonly done in a small, detached building. A few years ago it was a trade secret, but is so no longer. The linseed oil and sugar of lead are put into a caldron set in brick, over a wood fire. So soon as the oil boils up, and before it can overflow the caldron, the fire is extinguished by dashing water upon it.

After waiting for the caldron to partly cool, forty-five minutes in cold weather and fifty minutes in warm, the naphtha is poured in.
The object is to introduce the naphtha at the highest temperature that is possible without setting fire to it. As it is known, however, that the point of safety cannot always be attained, the caldron is provided with a metallic cover, suspended a few feet above it, which can be dropped upon it in a moment by pulling a rope, thus extinguishing the flames. Just that moment, however, is sometimes sufficient to cover the unfortunate attendant with the burning liquid, with a generally fatal result. This accident does not happen very often, but it does occur in some factory every few years, and it seems one that might be entirely dispensed with without any real loss, as the varnish, after being made, is of no use whatever to the goods except to impart a gloss which lasts only until they are worn. Some unvarnished goods are now coming into market, and it is eminently desirable that all should be so.

The varnishers suffer more or less from their long hours of labor, which are commonly from 4 A.M. to 7 or 8 P.M. They are never kept constantly at work during this time, but have to be on hand in order to finish up the goods as they come in. It is, therefore, from being curtained of sufficient time for sleep and necessary recreation, that they are liable to suffer rather than from actual overwork.

The materials for the foregoing report have been gained entirely from inspection of the Meyer Rubber Company’s factory at Milltown, and from observation and attendance of many of its employees, who number about 450. Much is due to the courtesy and frankness of its superintendent, in affording information and every facility in his power for investigation. It is due to this gentleman, also, to state that in the conduct of this establishment, everything that is possible is done to promote the safety and comfort of employees. Wherever possible, the dangerous parts of machinery are protected by casings. The strong temptation which exists to employ young children is resisted more in most similar factories, although many are found even here who ought to be in school. They are not allowed, however, among the machinery, as they are in some shops. Throughout the buildings and grounds, moreover, a degree of cleanliness and order prevails that would delight the eye of a sanitary inspector.

REPORT AS TO ASYLUMS, JAILS, PRISONS, PENITENTIARIES AND ALMSHOUSES.

BY THE SECRETARY.

It is well for the citizens of the State to recognize the fact that there are several laws on the statute book intended to secure some visitation and oversight of public institutions outside of that by the resident officers or by the directors.

This power was first given to the State Board of Health in respect to the sanitary condition of the various institutions. Additional legislation formed a Council of Charities and Correction for the special purpose of securing statistics as to the causes of dependency and crime, and advice as to the remedies. The last Legislature also recognized the agency of the State Charities Aid Association, by empowering it to apply to the Supreme Court for the appointment of visitors who could report on the conditions found in institutions. While the number of agencies would seem sufficient, there remains very much to be done in the interests of these divisions of our population. When it is remembered that they constitute about one in 70 of our entire population, and that the larger proportion of them is constantly returning to society, both on account of numbers and their special significance as classes, they demand our most attentive consideration. They are not a self-managing class to the degree that other citizens are, and in a very significant sense are the wards of the State. Their number has a very definite relation to the economies of the State, when it is remembered that they cost it more than any other one item. Their condition is still more significant when it is known that they constitute the extra hazardous portion of the population. Invalidity, pauperism and crime are no hidden spectres, but have ever been a menace to the stability of governments. This is especially true in such forms of government as our own. Their influence is not confined to the individual. They represent families and communities.
They represent often a heredity for the future even more than of the past. They are a factor with which the State must deal far beyond the simple idea of detention. As no asylum would venture to exist without some effort at relief or cure, and without some study with respect to prevention or limitation, so no almshouse, jail or prison has a right to exist without effort and study in the same direction. While this is admitted as a statement, it is not very actively operated as a fact. Yet it is an advance that by various agencies we are permitted to get some insight into various conditions, to suggest remedies and where they are not readily adopted to make a sentiment of healthy public opinion that will eventually secure results.

As a rule this Board has been seconded in its suggestions by the various institutions. The sanitary management of the State asylums is under efficient oversight. Neither of them at the start was provided with the needed structural arrangements. So far as the Trenton Asylum is concerned, the sewage is well removed from the buildings, although there is some criticism as to its final disposition by those residing near. The heating and ventilating apparatus is in accord with modern improvements, and it is realized that no perfection of apparatus can take the place of skilled oversight.

In the Morris Plains Asylum much of the system as originally completed is now of questionable perfectness while the ultimate disposal of the sewage was left to tentative measures. The Managers have recently adopted a system which, in its general features, was approved by this Board. Much of its efficiency will depend on construction and management as to which the Managers provide. In most of the eight county asylums of the State valuable improvements have been made. In most of them we have found such defects as required specific written statements as to them.\footnote{We do not recall a single instance in which the main improvements suggested have not been complied with and sometimes at considerable expense. We can point to instances in which great evils have been remedied and great changes inaugurated in the management of inmates. Occasionally those in charge fall into modes of management that they approve only because they have become used to them. Thus one asylum holds the idea that it is not safe to have washbowls or basins of any kind, and so the patients wash from faucets. In another case it was held that bedsteads are not safe in a jail. We do not cease to regret that county asylums were authorized for the smaller counties. The line of separation between the paupers and the more quiet insane is not well defined.}

CHARITABLE AND PENAL INSTITUTIONS. 208

Accidents, sexual and otherwise, occasionally happen, for which the half-demented victims are not so much to be blamed as to be pitied. While we meet many evidences of kindness and good intent, it can not always be said that classification and management are in accord with the advances that have been made in the care of alienism.

The State Prison is under such discipline and management as secures it good sanitary administration. It would be well if a map of underground pipes and connections showed all the relations of pipes, traps, etc. There is reason to believe that, in the older parts, the structural conditions are not as they should be. While the prison has great advantage in its ready place for discharge, sewers or pipes as constructed years ago often become sources of foulness. There is also some defect of ventilation in parts of the structure. At times the overcrowding of the cells is injurious. The two penitentiaries of the State are in good sanitary condition. It is in contemplation to make some change in the Hudson penitentiary as to closets, in the addition.

The greatest sanitary defects are found in the jails of the State. In the more crowded ones, such as those of Hudson or Camden county, there is need of change in structure and in the assortment of inmates. So long as the jail is a place for the promiscuous herding of vagrants, drunkards and the motley crowd of those arrested on minor offenses, or who cause themselves to be arrested only that they may have a home, it is impossible for our jails not to be the causes of more crime than they prevent or punish. By the board system of many of the counties, the most profitable inmates are those who, spending two nights and one day, eat nothing and pay for two days' board. Sheriffs or wardens who desire to do their duty should not be made dependent on such perquisites. The putting of four, five or six in one cell, and the full corridors of the daytime, with the bad conversation and conduct inevitable in such a method, must continue to make most of our jails a constant menace to the health, morals and peace of the State. It is impossible to maintain proper cleanliness under such conditions. The fuller jails come to be even in a worse condition than is conceivable to those who have not made examination. We had occasion, during the present year, to summon to the jail at Camden, for its inspection, the City Board of Health and the County Director and a few others. The scene will never be forgotten by any of the number. Garbage long unemptied, beds
and cells foul beyond description, linen unchanged for months, not a towel ever seen by inmates, and the general conditions of the dungeons, the corridors and the inmates, made it a scene scarcely to be credited, but for the number and character of the witnesses. The keeper, with great force, pointed to the character of the structure and of the crowds of occupants as the unavoidable cause. It is true that the vaults are wholly unfit for use. While there is no other so flagrant instance in the State, the jails of four or five other counties are but little better when the fewer numbers in them are considered. We are often able to improve them for a season, but there is too often relapse, because the structure of the cells, the association of the inmates and the promiscuous use made of the jails for every strayed or stolen, drunk or crazy, vagrant or criminal, defies classification, order or cleanliness. Modern civilization ought never to allow the jail to be the pen or corral for all misfortune or vagrancy.

The station house, the almshouse, the workhouse, the asylum, the charity home, the orphanage, have their uses. Separation is the first principle of successful management. Whatever views may be held as to the disposition to be made of long-term prisoners, all prison authorities agree that those under arrest and kept for short periods should have separate confinement. Such a system would break up our jails from being, as they now are, places for social resort and companionship to most of those who are now their guests. Until then, the sanitarian, the philanthropist and the State and government loving citizen must deplore a plan which makes more rogues than it punishes, and adds moral deformity to personal and structural uncleanness.

The almshouses of the State vary much in their condition. The eight which have asylums in them, generally have the two under one management. Sometimes there is a separate building. In other cases the apartments are entirely distinct. In most of the county almshouses there has been marked improvement in general sanitary conditions. The greatest difficulty is to secure sanitary discipline in the bathing, clothing and habits of inmates. If there is a bath-tub, too many of the inmates cannot remember that they have ever used it. Hudson county has happily adopted a uniform method in its pavilion and requires attention to many of the details of personal cleanliness. In many of the almshouses there is not sufficient change of clothing. Even the shoes or outer garments that have been worn for eight or ten years come to need replacement. Grease and dirt need changing as well as rags. Children are too often left to the loose associations possible in these almshouses instead of being separated so that they may not grow up to be paupers. Statistics are constantly showing that alms-care may relieve pauperism in some, and cause it in others. If all of the almshouses of our State could adopt methods now well understood and in actual use in the more advanced institutions, it would greatly reduce the amount of dependency in the State. In the reduction of this we should also have a reduction of invalidity and crime.

It is apparent that the visits made to institutions are of great service. They are made without previous notice and most of the overseers are anxious to meet with approval. Here and there a steward is insensible to the fact that his house is meant to be something more than a mere reception place for the poor, and so cannot be awakened to the idea that pauperism may be increased or diminished by almshouse management.

Some of the houses, like that of Burlington county, receive all the poor and give no outside help. In such, the group found represents the class condition of paupers in the county. In other cases, as in Trenton for instance, there is much outside help, and the almshouse contains but a very small part of the paupers. There is still a great work to be done, both by legislation and voluntary aid for the invalid, dependent and penal population of the State, and we still urge that from a sanitary, economic and social standpoint, greater attention be given thereto. The various reports of this Board, circular 29, the reports of the Bureau of Labor and Statistics, the report of Mr. Meyrick and the reports of the Council of Charities and Correction give valuable information relating to this subject.
ABSTRACTS FROM THE
PAPERS AND DISCUSSIONS OF THE NEW JERSEY
SANITARY ASSOCIATION.

SESSION OF 1886.

BY D. C. ENGLISH, M.D.

The twelfth annual meeting of the New Jersey Sanitary Association was held in the Assembly Room at the State House, Trenton, commencing Friday morning, November 12th, at 10:45 o'clock. Prof. James M. Green, of Long Branch, the President, in the chair.

TRAPS AND TRAP VENTILATION.

The first paper was upon "Traps and Trap Ventilation." The author being I. C. Bayles, M.E., of Orange. Mr. Bayles first described the trap as simply a bend or enlargement of a waste-pipe so arranged as to hold a small quantity of water. The function of this water is to close a branch waste against the free passage of air currents. If more than this is expected of a trap it is sure to disappoint the expectation. The more complex the structure of a trap, with a view to making it secure against influences tending to empty it, the greater the certainty that it would become a conservator of filth and in itself a nuisance. The writer's observation and experience led him to believe that the simplest form of trap, the "S" and half S, adequately vented from the crown of the bend, is the best, all things considered. A vent as large as the trapped pipe is adequate under all conditions. Traps are sometimes placed in positions which render vents of doubtful value. The venting of traps has a double purpose. It is intended to save the seals, which are liable to displacement by the creation of a partial vacuum in the waste-pipe system beyond them, making a demand for air which, if supplied through the trap, carries enough water out to leave
it unsealed. It is also intended to afford an outlet for foul air which might otherwise accumulate in the branch waste below the trap, and finally pass its seal by the well-known process of the absorption and release of gases by water. When the objections to the trap-vent are analyzed, they will be found to be advanced in the interest of patented traps. Commercial considerations undermine most of the current literature of mechanical hygiene. A large part of the inventions which are crowded upon the public notice are made, not because they are needed, but because by persistent advertising they can be made a source of profit. Most of them originate with persons ignorant of the practical problems encountered in plumbing, and who seek to remedy difficulties which exist only in imagination. Traps to “exclude” sewer-gas belong to this class of inventions. The attempt to bottle up bad air in pipes has long been abandoned, and progress tends steadily in the direction of multiplying easy and safe outlets for it. It is certainly a delusion to think it possible or desirable to exclude sewer-gas by mechanical means. Having examined on the average seven new traps a week for the past ten years, the writer does not hesitate to put it on record as his opinion, that the simplest trap is the best, and that any complication introduced in its construction tends to impair its value.

* * * A house drain should not be trapped. Many believe that the householder should interpose a trap between his house and the public sewer. A trap of any form there, he believed, will retard the sewage flow, and create worse conditions than those sought to be escaped from. * * * There is no difference of opinion as to the impropriety of trapping the soil-pipe at any point, the old practice which interposed a trap at the foot of the rising line where it turned in the direction of the sewer having been wholly abandoned and with good reason, but a good many cling to the idea that the householder should interpose a trap between his house and the public sewer.

* * * Granting that the conditions found in the sewer are bad, it is my experience that those created by the house-drain trap are worse. The obstruction to the flow created by the presence of a trap causes the waste water to deposit, in the pipe above the trap, its grease and solid matter which accumulates in strata of festering filth, inducing conditions worse than those which are found even in neglected and dirty sewers. * * * An untrapped house-drain with a sufficient fall is usually clean. The water it carries enters it with a velocity due to a vertical fall of ten, twenty or thirty feet, and usually reaches the sewer without depositing its burden. A trapped house-drain carries the sewer in its worst estate into the dwelling and establishes a domestic sewer-gas manufactory in the cellar. After mentioning other objections to the house-drain trap, and expressing the opinion that the arguments for it would not stand the test of critical examination, Mr. Bayles recommended very strongly in every case, that the house-drain and soil-pipe be made one, opening at one end into the sewer and at the other to the sky, insisting that it shall be free from leaks, with water and gas tight-joints. In a tube open at both ends there can be no pressure of gas or air to displace seals or force an outlet through lateral branches. With such a pipe he would connect his branch wastes in the usual approved method, giving each fixture its own hub, and not making the water-closet trap the medium of discharge for bath and basins. These branch wastes he trapped, and, so far as possible, he gave each trap a vent, chiefly with a view to promoting a free circulation of air through the whole waste-pipe system. This, in his judgment, is all there is of safe plumbing.

Mr. G. P. Olcott, C.E., in opening the discussion on this paper, said he was compelled to differ with the author when he took the strong ground that a trap should never be used between the house and the sewer. He was not in favor of a cast-iron rule here, for he believed, with a competent engineer in charge, it should be left to his judgment. He believed there is more trouble with vents from soil-pipe and fixtures by the position of the top of the pipe as to location and elevation. Often the vent is carried to the roof, but not to and above the highest point, and so it does not carry the foul air away from the house, and especially when the air is heavy it will descend and enter the first window. He said he would never allow a vent to be run into a chimney flue, but he carried as far as possible inside the house, then above the highest point of roof. The vent from traps can be carried without special reference to the highest point, but it is better if they are. In no case is galvanized iron safe. Nothing but cast-iron pipe with tight joints should be used. He did not believe a vent from cesspool or sewer outside of a house is of much value except on a very warm day.

Dr. E. M. Hunt thought the paper a valuable one, but was not prepared to go as far as Mr. Bayles in rejecting the trap in all cases. He hoped we should have it fully discussed, especially by the engineers present. He agreed with the writer that the “S” trap
was the simplest and is better than most of the more complicated patented traps.

Dr. W. K. Newton, of Paterson, in discussing the paper, said that he saw little use for the running trap on the main drain, just inside the house wall, for the following reasons: 1st, It is stated that the object of this trap is to exclude sewer-gas. Now, it is a well-known fact that the air of the soil-pipe inside the house is much more foul than that in the sewer; hence, the trap is of very doubtful utility. 2d, This trap impedes the flow of sewage from the house, and serves to retain solid materials and grease. The speaker was in favor of greater simplicity in house plumbing, and said that this should be the great aim in devising a system. He also said that the fresh air inlet on the house side of the running trap was also of doubtful utility, because it often acted as an outlet, and hence interfered with the circulation of air in the house-pipes. In summing up, he said that a system of house drainage should only need the following: 1st, A cast-iron pipe from a point outside the house where it connects with the sewer to run of undiminished size through the house, and at least two feet above the highest point of the roof. 2d, To this is attached all water-closets and fixtures. 3d, All basins to be trapped, and these traps provided against siphonage, either by a proper vent-pipe or by means of some anti-siphon device. 4th, Water-closet traps should be provided with vent-pipes of large calibre. 5th, Great simplicity of arrangement and the minimum number of fixtures.

Mr. J. C. Pumpelly, of Morristown, in a few remarks, urged the greatest simplicity compatible with safety.

C. Phillips Bassett, C.E., of Newark, said that, in a system that he had approved, the trap was abolished, but he was not prepared to say that the trap should never be used between the house and the sewer. The difficulty is that a very small per cent. of pipes are tight in their joints, and, of course, without good traps they are dangerous. A draining system with traps may also be dangerous if not properly constructed. If your main sewers are imperfect the trap is necessary. There are some traps which will stand siphonage and back pressure.

Mr. Bassett expressed his dissent from the views expressed by the author of the paper, and his belief is that in very many cases the outside trap and vent-pipe must be used.

The second paper on “Disposal of House Sewage in Districts not Provided with Sewers,” was then read by the author, C. Phillips Bassett, C.E., of Newark. He thought that it is not so much that we need more or even that we need better methods than are at hand, but that present knowledge be in some measure recognized and applied. He then dwelt upon the character of house wastes which combine to make up house sewage—of human excrement which may be the medium for transmitting distinct disease germs; washings from the bath and laundry which may be equally dangerous, and the multiformal organic wastes of the kitchen, the pantry and the table. He believed the refuse from the table and the kitchen sink became as dangerous sewage as that which flows from the water-closet. He dwelt upon the importance of this question and the careless indifference that had existed in remedying these great evils which so increased our death-rates, and declared that there is not a town in the State where the house sewage is properly removed from even a majority of the houses in the closely-inhabited districts. He then considered the subject under two divisions: 1st, Districts unprovided with sewers where such lack can be wisely replaced by other appliances; 2d, Districts unprovided with sewers for which the suggestion of any other remedy than a properly equipped sewerage system would be idle. We forbear making further report of this paper, as it will be found in the annual report of the State Board of Health. (Page 65.)

We quote, as worthy of emphasis, some of his concluding remarks: “It must be realized that public health is not a matter to be trifled with by reckless individuals who are content to jeopardize their own existences in the midst of disease-fostering conditions. The sooner the need for a centralizing, controlling power, which is interested not only in the sanitation of the wealthier and cleaner sections of the town (where proper sanitary conditions are, perhaps, most liable to exist), but also among the hovels and lower classes, is recognized and secured, the better. The weakest link of a chain measures its strength. The vilest section of a town may be the measure of its immunity from disease or contagion. * * * Anything which increases the demand for honest and intelligent protection and preservation of health, merits our encouragement and support. If we then run counter to custom
and present practice, we must meet the issue squarely and manfully. Reforms are not readily secured."

In the absence of Prof. Chas. McMillan, who had been expected to open the discussion on this paper, on motion of Dr. E. M. Hunt, Prof. C. F. Brackett was requested to do so. Prof. Brackett said that not having expected to open the discussion, and having heard only a part of the paper, he would not occupy much time, but he desired to say that from what he did hear of the paper he thought it deserved hearty commendation. Every building, in devising its arrangement of pipes and fixtures, must have its individual case considered, very much as the physician has to consider the case of his patient. It is quite impossible to lay down fixed and unyielding rules which will be of universal, or even general, application. The arrangement of rooms, the height of the floors above the sewer or cesspool, the character of the sewer, the slope of the ground, and it may be many other factors must be taken into careful consideration in devising such conveniences as modern life demands, if we would possess them in safety.

Mr. J. C. Pumpelly spoke of the decided and persistent opposition to the introduction of a system of sewerage in Morristown. The vast number of cesspools there was getting to be a very serious matter, especially since the introduction of their excellent water-supply. He would like to know more about the cremation of sewage. Mr. Basset reply that while that was available in disposing of garbage and solids, it was not so practical for the disposal of liquids.

Dr. E. M. Hunt stated that in Montreal a cremation furnace had been used with good results both for solids and liquid sewage, but while we may be agreed as to the methods to be adopted in our large cities, the most practical question is as to the best plan for small towns and villages. It is easy to manage a dry privy, but we need a separate system for liquids, and he knew of nothing better than the small-pipe system. Rev. Mr. Ballard, of Ocean Grove, spoke of their experience in Ocean Grove, and then of the difficulty they had had at Pitman Grove, where there was no descent of ground and no stream to carry away excreta. It was a serious question there when they had from four to ten thousand people there two or three months in the year. That the garbage was taken away every day and partly fed to hogs, and the remainder was composted. That formerly the privy vaults were trenches with a board which could be lifted at the back.

over whose deposits dry earth was sprinkled three times a day, but that the plan was objectionable because of the odors arising therefrom. That the last plan adopted was to have cemented vaults, say 20x16 feet from 14 to 15 feet deep, into which all excreta, chamber slopes, &c., could be placed. They were so constructed that the contents could be pumped into barrels upon a wagon. So long as the contents did not come within five or six feet of the surface they were nearly free from odor.

Adjourned.

AFTERNOON SESSION.

At 2:15 P. M. the meeting was called to order and the President introduced Dr. E. S. McClellan, who exhibited and explained the action of his trap with a fresh air inlet. This is the device—fresh air inlet for traps—which Mr. Bayles, in his paper, speaks of as working better often than a vent-pipe, responding quickly to a demand for air, but as promptly closing against a current seeking escape through it.

PHYSICAL LAWS OF PIPES.

Prof. C. F. Brackett, LL.D., of Princeton, was then introduced and delivered an interesting lecture on "The Physical Laws of Pipes." This lecture will be found elsewhere in this report of the Board of Health. (Page 81.)

C. P. Basset, C.E., then opened the discussion. He said that he did not deem it necessary to add much to the address that had just been delivered on the subject; that it was just such clear thought and careful deductions which had drawn sanitary science out of the haphazard and guess work which had until recently characterized the work now confessedly within the province of the trained and educated sanitary engineer. The use of a 4-inch house drain in the place of an 8 and 12-inch, or an old brick or stone channel, rough and open-jointed, was one of the progressive steps in sanitation only made possible by acquaintance with the laws of hydraulics and their practical operation. The same discernment has introduced sewers with cleansing flow and apparatus for flushing, in place of the elongated cesspools,
and, in fact, is the corner-stone of all sanitary progress. It draws the line between the engineer and the plumber, the expert and the practical man, &c.

DUTIES OF LOCAL INSPECTORS.

The next lecture was then announced on "The Duties of Local Inspectors, How Best Performed and Details of Method," by Dr. Henry Mitchell, of Asbury Park. Dr. Mitchell, 1st, Urged that training be provided for local Inspectors, and that in the near future no appointment shall be made to this office until a satisfactory examination shall have been passed by the applicant. 2d. He showed the benefits to be derived from a detailed record of sanitary inspection, giving the duties of Inspectors and methods of work somewhat in detail as it is carried on in Asbury Park and elsewhere. He thought the tax-payers have a right to demand that we give them for Inspectors, not novices in sanitation, but intelligent, competent men. The laws of New Jersey authorize sanitary inspection and local Boards have the power to appoint Inspectors. The latter should know thoroughly every detail of every building in his district. He should be acquainted with the vital statistics of every dwelling in it, and the condition of every lot and street, &c., and to him should be known the drains and sewers, their contents and ventilation. All this information should be recorded and classified and filed in the office of the Board of Health for availability. When not attending to complaints, the Inspector should be going over his district, book in hand—not to invade dwellings, but to study their construction. A good record of the sanitary condition of towns would do more for the promotion of the cause of public hygiene than any other single means.

Dr. T. R. Chambers, of Orange, was introduced, and opened the discussion. He said that while he believed in the education of Inspectors for service in cities as had been recommended, we must, in his opinion, discriminate, recognizing the fact that the rural Inspector's service differed from that of the city. Any extended course of training for the former seemed to him impracticable. A good New Jersey common school education as a basis, a polite demeanor, enthusiasm in the work, dispatch, tact for tracing the ultimate cause of the trouble and ability to apply the remedy, these were the points necessary for a good Inspector. The recent graduate from college was suggested as good material from which to secure such men.

PRESENT AND FUTURE WORK.

Rev. Dr. Ballard did not think the Inspector should be necessarily highly educated. Men of good common sense were needed to follow the instructions of the Board of Health. He had known a good policeman to make an efficient Inspector. The members of the Health Board should have the knowledge spoken of.

Mr. G. P. Olcott, C.E., questioned whether a college for township committees was not more needed than one for Health Inspectors. He argued that politics should certainly not be considered in making appointments.

Mr. E. G. Harrison, of Key East, offered the following:

"Resolved, That a committee be appointed to examine into the practicability of recommending a plan for the instruction of Sanitary Inspectors in the interest of public health and the enforcement of the present laws and ordinances relating thereto, said committee to report at the next annual meeting."

This resolution was referred to the Executive Council.

Dr. J. Y. Simpson, of Orange, spoke of their Board as being, in his judgment, well constituted, being composed of two physicians, an architect, a plumber and a lawyer. He thought one of the difficulties in getting efficient Inspectors was that the salaries were so small you could hardly expect to secure a skilled man. About $100 only is paid in their town.

The subject was further discussed by Dr. T. W. Harvey, of Orange, J. B. Pudney, Esq., of Passaic, and others.

PRESENT AND FUTURE WORK FOR HEALTH BOARDS.

The President then introduced Dr. E. M. Hunt, Secretary of the State Board of Health, who spoke on "The Work of the Present and the Immediate Future for New Jersey Health Boards." After a rapid notice of the advances made in organization and legislation in recent years, Dr. Hunt claimed that the time for diffusing information had not passed, but that it now had become (a) the special province of local Boards to do this work. The reports of the State Board and circulars by the thousands were at the command of the local Boards if they would systematically circulate them. These had been carefully prepared and were on practical subjects. It is found that they are extensively read when thus supplied. The press is also generally
ready to aid the local Boards when those locally informed contribute thereto. Next, (b) care as to judicial action should be exercised. Have clear, right and reasonable ordinances, right modes of procedure and prudence without timidity. Only seek new legislation when essential. The powers now given to local Boards are probably all that ought to be asked, except that somehow or somewhere there ought to be more control over wrong building and defective plumbing. In some cases, where for local reasons local Boards are deterred from doing their duty, it would be wise to give the State Board power to complain and secure action through chancery proceeding. (c) The appointment and training of Sanitary Inspectors was then insisted upon by Dr. Hunt. He referred to the fact that diplomas are awarded in six colleges in England for accomplishment in this line. Such an officer, though he may only receive now $100 a year, will soon become so valuable that he will command $1,000 or more. One in this State is now receiving $1,200 per annum. He referred to the excellent work now being done in Asbury Park, Paterson, Newark, and to the value of the records they have on file giving the sanitary condition of a large proportion of the houses in those places. The law requires Inspectors for all towns of over 2,000 inhabitants, and permits their appointment in all towns and townships. Inspectors are not merely for detecting nuisances, but for preventing them also. (d) Regular reports by Inspectors and a record of places visited, of work done and of action advised, must be made. The Board which requires system will not find itself without important work for each weekly or monthly meeting. (e) Next, local Boards should in every way avail themselves of the State Board, its Inspectors, its advice, its library, &c.

Dr. Hunt reminded the Association that the State Board, its library, its Inspectors, and its advice and co-operation are at the command of the local Boards, and subject to their call.

Dr. Hunt then introduced to the Association, Mr. J. J. Powers, C. E., of Brooklyn, N. Y., who spoke on the comparative value of several traps and on the disinfection of sewage. Mr. Powers gave several practical illustrations with appliances which he had brought with him. (See Mr. Powers’ article, page 75 of this report.)

Mr. J. C. Pumpelly spoke of the importance of enforcing the law requiring the appointment of a Health Board in every city and town.

The evening session was held at 7.45 o’clock, President Green in the chair. A large number of the young ladies of the State Normal School were present, also a larger attendance of the members of the Association. Prayer was offered by Rev. G. C. Maddock, of New Brunswick, who was invited to sit as a corresponding member.

The Physiological Side of Education.

Vice-President W. K. Newton, M.D., then took the chair, and announced the annual address by the President, Prof. James M. Green, on “The Physiological Side of Education.”

After an introduction, in which he spoke of the vigorous growth of the Association in numbers and influence, and of the efficient work of the State Board of Health, Prof. Green said it was his special prerogative on this occasion to deal with a subject relating more especially to the schools, reminding the Association that the principles that are there implanted and the habits that are there inculcated are to become the principles and habits of the adult generations to follow. He spoke of the abundant literature on the subject of school sanitation our State possesses; that what remains is the faithful working out of this knowledge in practice; that good plans for the execution of the work have been submitted and are in able hands, and he believed the time is being pushed rapidly forward when every teacher will feel the necessity of sanitary care, both for the security of her pupils and her position. Believing that there is one important branch in school economy which has not received sufficient consideration—the arrangement of our courses of study and requirements with due regard to the physiology of the child—he had been led to devote the remainder of his address to remarks on “The Physiological Side of Education.” Disclaiming any attempt to travel new ground, he should be satisfied if he could add emphasis to other’s views and help to make more general the knowledge of the few. He referred to the educational hypotheses of Socrates and Plato as having been wrong, but that their lives were consistent with their doctrines. Their teachings became deeply engrained upon the human mind and subsequent philosophy has borne their imprint. The Cynics, Antisthenes and Diogenes were
PHYSICAL RESTRAINT AND RELAXATION.

With what added force come all our hygienic teachings and principles, when we regard them as not merely productive of physical health, but necessary to our mental growth. With what increased zeal will we turn to an investigation of physiological laws when we discover them to be parallel to our mental laws and necessary to them. * * * The teachers go forth as sowers and reapers, and if they bear the tables of hygienic principles written upon their heads and hearts, they will return laden with rich sheaves for the harvest home.

Upon motion of Dr. Benjamin, the thanks of the Association were extended to Prof. Green for his able address, and on motion of State Superintendent Chapman, it was resolved that the President be requested to furnish a copy for publication.

PHYSICAL RESTRAINT AND RELAXATION IN THE SCHOOL-ROOM.

Prof. Charles Jacobus, Superintendent of Public Schools, New Brunswick, was then introduced, and read a paper on "Physical Restraint and Relaxation in the School-room."

He considered, I., restraint under three heads: (a) Its nature, (b) its disadvantages, (c) its benefits. Restraint is the act of restraining (or hindering) from motion, in any manner. Physical restraint, therefore, is the hindering of the motion of the bodily organs, or more fully it is bringing into a state of quietude, or rest, and keeping there the organs which otherwise would find their natural function in activity. * * * Restraint, in the sense in which it is employed in the subject assigned him, implies hindrance from motion through the agency of some power or person exterior to self, for, a cripple confined to one position, or an invalid incapable of free movement would not be under "restraint," in the sense in which we use it, as their condition alone, independent of external agency, prevents freedom of motion. Physical restraint in the school-room is necessary to insure order, Heaven's first law, for order cannot exist among children unless they be under restraint. School-room restraint generally requires that a child that has been under little or no restraint previously shall, all at once, enter upon an entirely different method of spending the time from that which has been in vogue. Prof. Jacobus forcibly illustrated this by an incident during his summer vacation. He saw in a rough board inclosure, about 20 feet square, in the spa-
cious grounds of a large hotel, a beautiful fawn that bad by some means been caught and transferred from the large liberties of its mountain home to this miserable pen. Instead of the cool retreats of the forest, it was exposed to the rays of an August sun, without any protection, flies adding to its misery, &c. It was under physical restraint, and with that restraint was nothing that could even approximately compensate for the lost liberty of its native haunts. The young colt was also cited as an illustration. “Something like this, sometimes is the transfer of a child accustomed to the largest liberties, to the too frequently rigid conditions of the school-room. No wonder a child chafes when such a change of life is experienced! It is really wonderful, in the rigid exactions of the school-room in this respect in years past, that so many have survived the practice with so little apparent harm. It shows at least the great elasticity of youthful nature.” He spoke of the child commencing school attendance and undergoing for twelve years this restraint at the period of what is naturally the greatest activity. The fact that the child does not rise in rebellion at the prospect is because it does not realize all that it must endure of physical restraint. The buoyancy of youthful natures, the frequent relaxing of the requisitions for restraint in recesses, intermissions and weekly holiday of Saturday, go far toward ameliorating a condition which otherwise might derive anything but hope or comfort from a consideration of its future course. The time has been when a rigid restraint has been put upon the child upon the threshold of its school life, with no relaxation accompanying (except at unreasonable intervals) to vary its grinding monotony. * * *

2d. Its disadvantages.—Chief among these were cited, the distaste which is created even in young minds for the atmosphere and future legitimate work of the school-room; disadvantages which leave in their wake a long train of accompanying evils, such as confirmed lack of interest, habits of slothfulness and mental inactivity, and a condition generally very much below par, even morally considered. These are some of the disadvantages, while the physical results, caused by physical restraint, from the length of time, the improper positions, and lack of adaptation of desk or seat to size of pupil, may be in the after-growth of a child of no unimportant character. * * *

3d. There are some benefits, nevertheless, connected with this physical restraint. The conditions necessary for intellectual development in after years of study will be more carefully observed because of required observance of similar (if somewhat severer) conditions in early years. The plainest demands for order and propriety, attention to which is necessary for realizing the most profit, either from single recitations or extended courses of study, these demands are partly satisfied by the advantages resulting from physical restraint, though the fact that these might be secured by other methods is by no means to be denied—methods involving more bodily activity in connection with school-room life, and so uniting brain-work with bodily movements as to make the latter furnish a zest for the former.

II. In considering the question of proper physical restraint, there will necessarily enter the subject of relaxation. The sudden cessation of a state of motion or activity, even with respect to material things, was then referred to as dangerous, and instances cited, and a gradual passing from one condition or extreme was urged as necessary; if we pay no regard to this, the physical health and the mental condition will sooner or later pay the penalty. Relaxation (in the sense in which it is here used) is a state or occupation intended to give bodily relief. Sometimes it means nearly the same as bodily repose after unusual or even ordinary physical labor. But in connection with physical restraint in the school-room, and as an offset to it, it may comprise not a state of bodily repose or quietude, but a condition of greater or less activity of the various muscles and organs of the body. Prof. Jacobus then spoke of the necessity of a wise combination of restraint and relaxation. “There are some teachers,” he says, “who have combined the various exercises of their scholars so happily; who have so much room for the introduction of exercises calculated to relieve the body, and seats and desks so well adapted to the size of their pupils, and especially rooms of such capacity and so well ventilated, and with a proper number of scholars, as to leave little to be desired, and to reduce the evil generally resulting to a minimum.” He quoted Fitch’s remarks in his “Lectures on Teaching.” “If provision be not made for giving lawful vent to a scholar’s personal activity, and he is called to maintain a confirmed position for an unreasonable time, his restlessness and disobedience are the teacher’s fault, not his. * * * The physical activity so natural to the child needs to be directed, not restrained. You cannot stop its flow without doing great violence to the child’s mind and heart.”
He who stops a child in terror,
Stops its play or stills its song,
Not alone commits an error,
But a grievous moral wrong.
Then give it play and never fear it,
Active life is no defect,
Curb it only to direct.
Would you stop the flowing river?
Think you it would cease to flow?
Onward it must run forever,
Better teach it where to go."

Prof. Jacobus then discusses at some length the great value of physical culture, gymnastics, calisthenics in the school-room as an offset to physical restraint. The need of improved and increased facilities was urged. He spoke of the service which recent manuals of directions have rendered, and how a few enthusiastic and determined teachers have made their work easier and more productive of good (mental and physical) to their pupils by zealously learning and putting into practice their comparatively simple instructions. He also spoke of the plan suggested for the solution of the problem through industrial education as worthy of consideration. He agreed with Prof. Morton that "the great danger to the youth is that he has too much idle time," and he believed that the best teachers are those who keep their scholars at work and teach them to love to work. "The toil we hate fatigues us soon." He was glad that the colleges and higher institutions have been waking up of late to a greater demand for attention to the physical. He believed the lower grades of school and academic life ought to be embraced in the list, especially when we realize that a very small per cent. of the youth of both sexes go to higher institutions and many drop out before the ordinary public school course is even half completed. He asks, "How much greater the need of proper care for the ninety and nine in those years of life when they are most susceptible to physical restraint and any improper physical manifestation or tendency shall have been confirmed or strengthened?" He would insist that all who enter the ranks of teachers shall be duly qualified from their knowledge of the system of instruction and the nature of their pupils to know how far and how well the former is adapted to the latter. He expressed surprise that the National Teachers' Association had given so little attention to this subject. While it has been considered indirectly in some excellent papers, there has, so far as the records of their meetings show, been no paper presented on the symmetrical development of mind and body. He commended Dr. Hartwell's "Physical Training in Colleges and Universities," published by the National Bureau of Education. Prof. Jacobus urged the positive need of more room for scholars and fewer scholars in a room, of proper warmth and especially of light and ventilation. He also referred to the uncomfortable and unhealthful postures in uncomfortable seats as needing correction. Also, as one of the greatest present needs, is to educate trustees, committeemen, teachers and even many physicians in physiology and hygiene.

Prof. J. Madison Watson, of Elizabeth, was then introduced, and opened the discussion on this paper. He thought it was well at the opening of this discussion to recognize the fact that practically man is an integral, that his powers of mind and body are indivisible, that he is a very oneness. Education really embraces the drawing forth of all the faculties—the discipline of the intellect, the establishment of the principles, the regulation of the heart, of the manners and outward conduct, the training and symmetrical development of both mind and body. Physical restraint in the school-room is an abnormal condition, and it should be exceptional. The healthful activity of the mind involves neither physical restraint nor mere acquiescence, for both mind and body are naturally accordant. The apt teacher readily awakens interest and enthusiasm in the minds of his curious and inquisitive pupils. He secures fixed attention for brief periods, and so varies the lessons that the very changes are recreative. He employs extensively blackboard exercises and the numerous pieces of apparatus and appliances of the modern school-room, so that the relaxation involving idleness and mischief is quite unnecessary. Our physical organs should become a part of our education. We should be under perfect control, that every movement may be properly directed and controlled. Prof. Watson described several physical exercises, including phonetics. He spoke of the great variety of movements of the body which might be practiced where there were no mechanical appliances. He recommended them as invaluable to secure the development of bodily vigor. He was inclined to doubt whether there could be a well developed mind without a proper physical development, or whether there could even be a true moral character without a well developed body.

Dr. E. M. Hunt said the term "physical restraint," in connection with our schools seemed to sound out of place, as we are accustomed
to use it in reference to our asylums and prisons. He preferred the
word "discipline" or training as thus applied. He spoke of the
necessity of simplifying physical culture or exercise, and spoke warmly
in favor of it.

Rev. F. R. Brace, Superintendent of Schools of Camden County,
said he was in harmony with the views presented as to the propriety
and necessity of proper physical development. No one was more
earnest in advocating physical training in the school-room, but he said
that he also believed in physical restraint. He spoke of the world
on which we live as being kept in its place by the law of restraint,
which is one of the great laws of the universe; of liberty of move-
ment as always within the restraint imposed by law; of the train of
cars having its liberty only as long as it is restrained within the limits
imposed by its parallel rails; of restraint as necessary to strength;
manhood is in its fullness only when great reserve forces or restrained
forces are preserved. He spoke of the general that wins the battle
as being the one who knows how to put restraint on part of his
army, who can keep back on the side of some hill or in some woods
a corps of men who may be eager to be in the midst of the fray, but
who are held there by his iron will until the proper hour arrives,
when he gives the word and these men pour in upon the battle-field
and the victory is won. He believed restraint is necessary to develop-
ment, is necessary to permanent success. He was compelled to differ
with one of the gentlemen discussing these papers, who said that he
doubted whether there could be a proper mental or moral develop-
ment without a proper physical development. Mr. Brace believed
the mens sana in corpore sano was a very valuable maxim. That a
good sound, strong body is necessary for this world's work; but he
called attention to many persons physically diseased, almost if not
quite from their birth, who nevertheless had made the grandest
mental attainments, and many such who have attained to the most
beautiful, most lofty moral character. He felt that while we should
give due attention to this important side of human training, we should
not exalt it beyond its proper place.

THE WORK OF THE PLUMBER.

MORNING SESSION.

SATURDAY, NOVEMBER 20TH.

The Association reconvened at 9:45 o'clock A.M., President Green
in the chair. The resolution introduced by Mr. Harrison was
reported back favorably and adopted, and Dr. D. L. Wallace, of
Newark; E. G. Harrison, C.E., of Key East; Dr. H. Mitchell, of
Asbury Park; J. B. Pudney, Esq., of Passaic, and Dr. E. M. Hunt,
of Trenton, were appointed said committee.

THE WORK OF THE PLUMBER.

Mr. J. J. Powers, of Brooklyn, then read an interesting article on
"The Work of the Plumber and the Modes of Conveying and Dis-
posing of Sewage." (See this report, page 75.) He spoke of the great
progress made in plumbing since his connection with the plumbing trade
began some 20 years ago. Formerly, he said, the plumber's work was
considered successfully accomplished when the water freely ran from
the supply pipes and the waste waters were quickly carried off through
the discharge channels. Afterwards, when diseases increased in num-
ber, the medical practitioners revealed the fact that some connection
existed between these diseases and defects in the plumber's work; this
was the first step towards improvement, and to physicians alone are
the public indebted for the advance in experimentation and investiga-
tion. Next came the evolution of the sewer-gas theory, which forced
upon the plumbers many microbes and sanitary engineers to be taken
care of in some manner least prejudicial to the public health. * * *
The improvements in plumbing within the last ten years are simply
phenomenal.

Dr. E. M. Hunt, in opening the discussion on Mr. Powers' paper,
said that he should occupy the time asking Mr. Powers questions
rather than in commenting on the paper. The chief questions and
answers were as follows:

Q. What relation has the height of a waste-pipe to the siphoning
of traps? A. As I have the waste-pipes always extend up through
the roof full bore and open there, and as I use the bottle trap, I dis-
regard height.
Q. Has the length below the trap any influence on siphonage?
A. Yes; but with the bottle trap I do not take it into account, as the
siphon action is valuable to stir up and dislodge sediment that would
otherwise remain in the trap.

Q. Should a trap be of smaller calibre than the pipe? A. It
should never be smaller and may be larger, but I have never found it
unwise to have it the same size.

Q. Do you, as a plumber, know of many cases of pressure of sewer-
gas in pipes? A. I, in my experience, have never known of a pres-
sure from the sewers great enough to disturb any reliable trap, except
where there was an obstruction.

Q. Should each trap have a vent-pipe at its crown, or out-go? A.
If the main-pipe opens on the roof, and the horizontal branch is not
more than 7 feet from the main, and such a trap as this bottle trap is
used, I think it unnecessary.

Q. In your judgment, should there be a trap on the soil-pipe as it
leaves the house to pass to the cesspool or sewer? A. Yes.

Q. And in that case should there be a vent-pipe inside of this trap
running up the outside of the house? A. There should be, or some
form of opening to the air. There is, I know, more circulation of air
in the house-pipes or more currents when the vent is not carried up,
but terminates at the ground level.

Q. What should be its calibre? A. It is best to have it nearly
that of the vertical soil-pipe.

Q. Can lead and iron pipe, as bought by the pound, be trusted to
have uniformity of thickness? A. Yes, generally, but much is used
that is too thin throughout.

Q. What should be the thickness and quality? A. Extra heavy
iron and D lead waste.

Q. Should the iron pipe be coated as in the "Angus Smith method"
A. I do not believe it should, as it conceals defects.

Q. What plumbing regulations do you most approve? A. Those
of the Brooklyn Board of Health.

Prof. F. A. Wilber, of New Brunswick, asked Mr. Powers if he
had ever used alum in place of perchloride of iron and chlorine for
precipitation. He replied that he had not. He had used unslaked
lime, but the odor was objectionable. He had never used the sulphate,
but the perchloride of iron had given him the best satisfaction.

Prof. Wilber said that alum is the best coagulant he knew of, bet-
ter than the perchloride, very much cheaper, and can be had any-
where. Sewage thus treated may be safely put anywhere. He also
spoke of the value of sewage thus treated for agricultural purposes.

PRESERVED FOODS.

Shippen Wallace, Ph.D., of Burlington, was introduced, and pre-
sented a paper on "Preserved Foods." After tracing the early
history of the preservation of foods, he spoke of its introduction on
a commercial basis in this country during the California gold excite-
ment, in 1848, but not to any extent until the civil war commenced,
since which time it has steadily grown until now it has assumed enor-
mous proportions, and preserved, or as more commonly called, canned
articles of food are to be found in all parts of the world, and mainly
of American production. He spoke of the vast number of articles
now preserved, and we can well remark, as did the poet over two
hundred years ago:

"There's no want of meat, sir,
Portly and curious viands are prepared
To please all kinds of appetite."

Millions of dollars of capital are now invested, mostly in the Mid-
dle and Eastern States. It has been estimated that there are over 800
factories in the United States engaged in this work, turning out
500,000,000 tins annually. For several years there have been an
average of 50,000,000 cans of salmon packed; tomatoes, 72,000,000
cans; corn, 5,000,000. Besides these we have the various other
vegetables, meats, condensed milk, fruits, &c., &c. The process of
preparing consists in partially cooking and then hermetically seali-
g the article in a tin or glass vessel, and when properly done it will
keep for an indefinite time. At the Fisheries Exposition, in Berlin,
in 1880, the American canned salmon, which was awarded the first
prize, was packed in 1875. Dr. Wallace then refers to the remark-
able freedom from adulteration of these canned goods, while there has
been so much adulteration of other articles during the past decade.
He cited a number of instances of the chemical examination of large
varieties of canned goods. It has been the universal verdict of those
who have examined them that they contain nothing injurious or
harmful. He made the assertion that there is not on record a well-
authenticated case of poisoning or death from the use of canned food that was sound at the time it was consumed. Death recently resulted in a case where the victim had eaten putrid salmon. It is such cases as these which have created the impression in the public mind that some legislation is necessary for the protection of the public health, when it is safe to say that far more sickness has been occasioned by the same amount of fruits, vegetable, fish and meats not canned. A moment’s reflection will show that food exposed to a high degree of heat, as all canned goods are, in the preserving process, are more likely to be free from disease-producing germs, and as canned goods are usually put up at the sources of supply while fresh, and are hermetically sealed while in that condition, they are really fresher and more wholesome than the so-called “fresh” fruits, &c., which are exposed for considerable periods of time in city markets. In opening a can, if it has been improperly sealed, one may find the contents extremely acid or covered with “mold;” if so do not use them. All preserved foods should be removed from the cans when opened, and portions not allowed to remain in for several days, as the action of the air causes the acids, &c., to act on the metal of the can, and after a few days sufficient of the tin may be dissolved to cause sickness, or the food may be spoiled. In concluding, he advised no one to buy what are called “swells” in the trade—where the top or bottom of the can is swelled or pushed out by the gas in the interior. This bulging shows imperfect process of canning, which causes some fermentive change in the contents. Reprocessed goods should also be avoided—a small hole is punched in the end of the can, the contents then reboiled, the swelled head pushed down and the new head soldered up. A new label is then put on, so that the can will look as good as new. They may sometimes be identified by finding two soldered holes instead of one in the top or bottom. All articles found in cans rusted or corroded should not be eaten. Remember that all canned goods, especially meats, should be removed from the can immediately on opening and then placed in glass or earthenware vessels and treated the same as ordinary articles of food, that is, placed where they will not putrefy or ferment.

Prof. F. A. Wilber opened the discussion on Dr. Wallace’s paper. He thought that little need be said after the full presentation of the subject in the paper. After commenting on some points of the paper, he said that one other point was worthy of consideration—the cleanli-

ness of the surroundings where these canned goods are put up. They should be inspected as in some of the meat-packing establishments. One large place he had visited was so unclean in its surroundings that he had never since bought any vegetables that were put up at that place.

Dr. I. P. Davis, of Milltown, agreed with Prof. Wilber. He had made similar observations in visiting some canning factories. He had known of cases of lead-poisoning from carelessness in sealing cans.

Dr. I. N. Quimby, of Jersey City, thought that not only these factories, but our bakeries and confectionery establishments should also be investigated on this point of cleanliness in surroundings, and also as to purity of materials used.

H. Wharton Amerling, President of the Society to Prevent Adulteration of Foods and Medicines, &c., Pennsylvania, said we had not only the matter of adulterations, but also of sophistications in canned goods to fight.

Dr. D. Benjamin thought the meat alkaloids are one of the new phases of this subject which needs to be investigated.

DRINKING-WATER AND TYPHOID FEVER.

The President announced the next paper on “The Relation between Drinking-Water and Typhoid Fever.” (See paper in this report, page 133).

Dr. H. R. Baldwin, of New Brunswick, was then introduced, and opened the discussion. He said the history of mankind and of disease favors the view that many diseases have their origin and development in specific poison or germs. These poisons when applied to the human organism are characterized by phenomena which present, under the various forms, a considerable degree of uniformity. Thus chemical poisons give us their characteristic symptoms, and so their “contagium vivum” manifest their presence by well-recognized symptoms. Historically the ravages of the “Black Death” during the Fourteenth century, the sweating sickness during the Fifteenth century, and the plague which visited England every sixty or seventy years, were not arrested until the issue of bills of health in the year 1665. Since that time England has never suffered from the plague. Showing that these sanitary cordons had stopped something. For 1,200 years smallpox ravaged Europe until the introduction of vaccination during the
latter part of the last century. Have not our microscopes shown that the virus was in the shape of a germ? To this class of diseases typhoid fever belongs. It can be transmitted by a saturated atmosphere (through sewer-gas), also by diseased meat, but above all, and embracing all, by drinking-water. This may arise by a concentration in wells during dry seasons as instanced by Dr. Lindsley; by water contaminated in the laundry, and the refuse finding its way to the water supply; from wells polluted by escape from vaults; by pollution of streams; by milk, according to Ballard, where the cans were washed by polluted water. Dr. Baldwin cited numerous illustrations to enforce these statements.

Prof. J. H. Raymond, M.D., of Brooklyn, N. Y., thought possibly too much attention had lately been given to the causation of typhoid by drinking-water. He does not believe that water is the only carrier of the poison by any means. In Brooklyn they had abolished nearly all the public pumps, only one now left, but typhoid fever did not disappear. Last year there were 150 deaths. In nearly all the epidemics, where the cause had been traced to drinking-water, the number of cases was large, what we should expect. The converse should be equally true, where a small number of cases, the causation by well or drinking-water is disproved. Drinking-water had comparatively little to do with causation in these 150 cases. They had a complete history of every case from October 1st, to the end of the year 1885. No single cases did we find where perfect plumbing was found, but in all cases it was found faulty. The sewers were disinfected and the epidemic ceased. He believed that three things were essential in preventing epidemics of this disease:

First. See that the plumbing is in good condition.

Second. See that the discharges of typhoid fever patients are disinfected.

Third. See that the public sewers are disinfected.

Dr. E. M. Hunt said he would present two thoughts: First. If typhoid fever is generally conveyed by water, it is scarcely safe to assume that it is never conveyed by air in close proximity to water. He instance a case in his practice where he had reason to believe that it was contracted from the vapor arising from soiled typhoid clothing which was being stirred while being soaked and heated over a fire. The water of moist air can get into the lungs and the stomach. In the close rooms of the sick, the water of very moist and warm air is a probable source of communication as well as drinking water. Second. The fact that a disease is shown to have a specific organism or microphyte does not prove that it may not have arisen without a previous case of the same exact specificity. There can be such newness without involving the acceptance of any doctrine of spontaneous generation on the one hand, or without denying on the other that such diseases arise in the great majority of cases from an antecedent case. Dr. Hunt illustrated this by showing how hybrids are multiplied so distinct from their parentage as to have a type of their own. On the authority of Prof. Grey and others, he contradicted the common impression that hybrids are sterile, as they are sometimes immensely prolific. He brought this new view to bear on what may be called the infinitessimal botany of communicable diseases. He claimed that by what we may have at times to call fortuitous circumstances, new forms of disease may spring up from peculiar approximations of the low plant life of diseases, and by peculiar conditions of atmosphere and surroundings. Thus out of the jungle fever of Africa, and the "bilge and hold" typhus of the tropics, may have come yellow fever; out of common intestinal fluxes and aggregated and vicious cross and culture power on the delta of the Ganges, cholera; out of minglings of microphytic life in animal and vegetable decompositions, typhoid fever; and from excessive conditions, the ordinary forms of sore throat occasionally have given place to diphtheria. In the mind of the speaker, this was not a mere idea, but seemed a necessary hypothesis derived from studies and experience in epidemiology. The most hopeful ideas in sanitary and medicinal therapeutics are: (a) to find whether and under what circumstances hybridism or other de novo production of contagium occurs; (b) to find and overcome those insanitary conditions of surroundings favorable to the reception or propagation of disease; and (c) by antiseptics to sterilize the human system in times of exposure, so that it will refuse reception or culture to this destructive plant life.

Dr. I. N. Quimby thought the paper an able one. He agreed with Dr. Hunt. He believed that cases of diphtheria and typhoid fever were met with of spontaneous origin.
Many an Inspector has failed for want of it. Every Board of Health should have a chemist, to determine questions of adulteration of milk, of foods. There should be one or more public vaccinators; this appointment should be permanent; each one should go over the ground of his district not only during epidemics of small-pox, but also between the intervals. The tendency is too much to treat small-pox after it comes, rather than to prevent its appearance. A veterinarian is also important as an adjunct to an efficient Health Board. Some diseases of the lower animals are communicable to men. It is very important for the protection of the community that meat be inspected regularly, and it should be inspected at the slaughter houses where the viscera as well as the carcass can be well examined. He had known of many cases where such examination (of the viscera), where the meat had been condemned, in which, if the carcass only had been examined, the meat would have been sold. In our cities and towns where it is impossible to dispose of waste material on the spot, and we have to have sewers, there should be one or more efficient plumbers on the Health Board. It not only makes the ordinary plumber more careful when he knows that his work is to be inspected, but he has known of many cases where defects in the soil-pipes in the wall had been detected by a competent plumber, when the ordinary physician without practical experience in plumbing had failed to detect them.

The Health Department he thought should also embrace a fumigating and disinfecting corps, it may be a medical corps, perhaps one or more specially skilled laymen. He spoke against the popular fallacy that a little sulphur burned in a hot pan, or in fact any fumigation that can be done while the patient is in the room is sufficiently effective. In regard to the returns of physicians and others he thought a great deal of the difficulty is chargeable at our own doors. If their reports are only placed on file without further investigation, the physicians are not likely to take much interest in it. We should treat all contagious diseases alike. Physicians report small-pox cases because they know that Boards of Health take cognizance of such cases and institute steps at once, and because the general public believe it to be the most terrible of diseases, and physicians are liable to be denounced for failing to send in reports to the authorities. Why not in diphtheria, typhoid fever, scarlatina and measles? Some ten years ago the Brooklyn Board treated all these disease alike. Educational documents on the importance of stamping out these dis-
cases were sent out among the people and they did an immense amount of good. Some physicians look upon the requirement to report as illegal and as an invasion of their rights, but they are growing less and less in number.

In Brooklyn the cases of contagious disease are reported to the Inspector of the district in which they occur. When received the Inspector goes to the house and inspects the surrounding, endeavors to ascertain its origin, &c. The children in the family are prevented from attending public schools, if necessary the Inspector notifies the teachers. When deaths occur in contagious disease cases the Inspector should be sent to the house, should see that it is properly disinfected, allow no public funerals and see in every way that its spread shall be prevented. The importance of physicians making returns of these cases will be seen when it is understood that they are the basis of efficient work by the Health Board.

Dr. D. L. Wallace, of Newark, opened the discussion on Prof. Raymond’s lecture. He thought the plan detailed was admirable in cities and large towns. In Newark they had eight physicians who attend the sick and poor, and they report monthly. They have eight Sanitary Inspectors who report every day as to the condition of their respective districts; they are trained by lectures, &c. Every city should have one or more Sanitary Engineers to do this drilling or training, and they should examine the sewers and drains and the plumbing. He would insist that disinfection and isolation should be enforced in contagious diseases. The law allows physicians 25 cents for each contagious case reported. He thought that returns of births, deaths and marriages should be made direct to the Board of Health.

The President announced the following Committee on Legislation: E. S. Atwater, Esq., of Elizabeth, Chairman; L. B. Ward, C.E., of Jersey City; E. M. Hunt, M.D., of Trenton; Hon. E. O. Chapman, of Trenton; and J. A. McGrath, Esq., of Jersey City.

The Secretary reported from the Executive Council the following nominations for officers for the ensuing year:

President..................W. K. Newton, M.D................Paterson.
First Vice-President........E. L. B. Godfrey, M.D..............Camden.
Second Vice-President......H. Mitchell, M.D..................Asbury Park.
Recording Secretary.........D. C. English, M.D................New Brunswick.
Corresponding Secretary....Prof. J. Madison Watson.........Elizabeth.
Treasurer...................J. C. Pumperly, Esq................Morristown.

FOODS, DRINKS AND ILLUMINANTS.

EXECUTIVE COUNCIL.

(With the above-named officers.)

Dowling Benjamin, M.D., Chairman........Camden.
Hon. E. O. Chapman........................Trenton.
Rev. Dr. A. E. Ballard........................Ocean Grove.
G. P. Olcott, C.E............................Orange.
C. B. Brush, C.E..............................Hoboken.
Rev. F. R. Brace..............................Blackwoodtown.
Prof. Chas. Jacobs.........................New Brunswick.
C. P. Bassett, C.E............................Newark.
Hon. J. A. McGrath.........................Jersey City.
Shippen Wallace, Ph.D.....................Burlington.
Prof. Wright Eckersly......................Long Branch.
S. H. Hunt, M.D............................Long Branch.
D. L. Wallace, M.D........................Newark.
Uriah White, Esq..........................Asbury Park.

These gentlemen were unanimously elected.

FOODS, DRINKS AND ILLUMINANTS.

Dr. Newton then read a paper on “What Boards of Health Can Do to Prevent Adulteration of Foods and Drinks and the Sale of Dangerous Illuminants.”

He said it was not his intention to deliver an elaborate lecture, as the programme would indicate, but he thought that the purpose of the State Board in asking him to address the Association would be accomplished if he ran over in a conversational way the various branches of the topic. He said that the question propounded by the title might be answered by saying that the powers conferred by law on our local Boards of Health were so supreme, that if they enforced the laws the sale of adulterated foods and dangerous oils would be immediately checked. He also stated that no new legislation was needed under this head, but that sufficient power was already given, and that all that was necessary was for Boards to begin work. He discussed the topic under the following heads: I. Powers of local Boards, (a) under the food law, (b) under the milk law, (c) under the dairy protection act. II. Powers to prevent the pollution of water-supply. III. Powers regarding the sale of illuminating oils. IV. Duties of Boards.

An act to prevent the adulteration of food or drugs, passed in
March, 1881, and the supplement of 1883, defines and prohibits adulteration and empowers local and other health officers to enforce it. The milk law also empowers local Boards to check the sale of impure milk. Under the dairy protection act of 1886 the sale of impure butter may be prohibited. Local Boards also have power to forbid the sale of oil that does not come up to the legal test. Regulations for the government of Inspectors under these laws have been issued by the State Board of Health, and clearly define the duties of these officers. In closing, Dr. Newton said that in all cities and populous towns and boroughs the local health authorities should enforce these laws, and that Inspectors should be prepared to insure a pure food supply. He recommended, when possible, a chemist should be in the employ of local Boards to whom could be sent foods and drinks for analysis. In the smaller towns and villages, where the expenditure for these purposes could not be warranted, that the State Board should have supervision over this kind of work, and that samples of foods and water should be sent to that body. He stated that the State Dairy Commissioner would examine samples of milk and butter without expense to the local Boards of Health. Dr. Newton illustrated his lecture by exhibiting various instruments for testing milk, oil, &c. A sample of milk that had been procured in Trenton was examined and found to be above the average in purity and richness.

J. C. Pumpelly, Esq., moved the following, which was unanimously adopted:

"Resolved, That the State Board of Health be requested to call the attention of township and other authorities to the law that makes the establishment of a Board of Health mandatory."

Dr. Mitchell claimed that we should do our best to secure better administration of sanitary laws. The work of training Inspectors can and ought to have immediate consideration. The State Board of Health is now taking steps towards their more thorough culture in sanitary science. One of the most pressing needs to-day was a law, properly enforced, to secure the proper construction of houses, especially of their drains.

Dr. F. Gauntt, of Burlington, desired to express his gratification, and congratulate the Association on the great progress made in our State in sanitary matters, and gave this Association great commendation for what it had accomplished.

President Green, in a few closing remarks, spoke of the growth of the Association in influence and earnestness, and he felt that this meeting had been a remarkably successful one.

Thus closed the twelfth annual meeting, which, in the presentation of able papers and lectures, and the interesting and practical discussions thereon; in the desire for and determination to do more thorough work through better administrative methods and more thoroughly qualified health officers, as well as in the enthusiasm exhibited in behalf of sanitary reform in its various departments, will, it is believed, exert an influence throughout the State, which will be powerfully felt during the coming years.
SUMMARY OF REPORTS FROM LOCAL
BOARDS OF HEALTH.

BY THE SECRETARY.

Besides the frequent correspondence had with the various local
Boards of Health throughout the State, the law requires an annual
report, as follows:

SEC. 11. And be it enacted, That every local Board of Health of
any township, county, city, borough, town or other municipality shall,
on or before the first day of October in each year, in addition to other
reports required, prepare an annual report of the condition of the pub-
lic health in their several districts, stating therein any special cause
for deterioration of health or of hazard thereto, and shall therein
answer any inquiries which may have been addressed to them by the
State Board of Health, and such Boards shall forward a copy of such
reports to the State Board of Health on or before the fifteenth day of
October in each year.

In accordance with this section of the law, full response is made
by the most of the Boards. Where there is no report it is usually
because of want of proper organization of the Board. Here and
there a township regards itself so remarkably healthy, or some mem-
ber of the township committee is so positive as to the needlessness of
a Board, that the law is not conformed to. Yet just such townships
are now and then caught with the intrusion of some nuisance that
might easily have been prevented, or with the outbreak of an epi-
demic, which only gets headway because the local Board is not in
working order. Just now two townships are involved in an epidemic
and a panic that could never have occurred in other townships where
the Boards are in ready understanding as to authority and how to use
it. As a consequence, the expense of a month and the loss of trade
to the district will be more than Health Boards would have cost in ten
years.

(239)
The following is the usual schedule which is sent each year to the local Boards:

SCHEDULE OF SUBJECTS FOR REPORT.

A. Location, population and climate.
B. Geology, topography and contour.
C. Water-supply.
D. Drainage and sewerage.
E. Streets and public grounds.
F. Houses and their tenancy.
G. Modes of lighting.
H. Refuse and excreta (how managed).
I. Markets.
J. Diseases of animals.
K. Slaughter-houses and abattoirs.
L. Manufactories and trades.
M. Schools and school and other public buildings.

N. Almshouses, hospitals and other charities.
O. Police and prisons.
P. Fire guards or escapes.
Q. Cemeteries and burial.
R. Public health laws and regulations.
S. Registration and vital statistics.
T. Quarantine or care over contagious diseases and vaccination.
U. Sanitary expenses.
V. Heat and ventilation for dwellings.
W. Prevalent diseases of the year.

Other subjects may be named under X, Y, Z. The subjects may thus be referred to by the letters.

If the sheet provided is not sufficient, add others, marked with the letters which designate the topic treated.

Where there have been previous reports, some of the items are already on file and do not require repetition.

Where there is evidence of neglect or of the need of more active measures, we now seek to send Sanitary Inspectors to instruct local Boards in the law and their duties under it; to aid local Inspectors and to, in other ways, supplement the work of the local Boards. The State Board has resolved to give the services of its Inspectors more fully to the local Boards where there is evident need of it. Here and there a city which neglects its sanitary care, and so becomes a menace to the State at large as well as to its own citizens, will be visited, inspected and fully reported upon by the State Board or its representatives.

The returns from local Boards, many of which are valuable as records, do not need to be repeated in the annual report. We therefore study brevity, and only abstract so much as seems to be of general interest. Other Boards are thus often guided in their duties and privileges.

ATLANTIC COUNTY.

ATLANTIC CITY. - Report from M. D. Youngman, M.D., Sec'y.

The water-supply has been ample for the past year, and of most excellent quality. The company deserve commendation for their care in filtering and storing in time of plenty for the drought that usually attends the summer season along this sea-coast. Many people still depend on cisterns, but the majority use the city water. The fact of its source being from a stream arising from numerous local springs and traversing a country that is almost wild, gives a feeling of confidence in its purity. All lead pipes have been removed by order of the Board and replaced with galvanized iron.

The drainage system in operation here is still undergoing improvement, although as fulfilling the ends sought as to removal of sewerage its success is demonstrated. The large increase of hotels and cottages connecting necessitated the addition of another suction pump and this was added the first of the year, and during the busy season both were kept running. At the request of the Board the company agreed to put flush tanks at the extremes of the system and build manholes at the intersection of all streets. The company have found it advisable to remove many of the terra cotta pipes first put down, and replace them with larger iron ones, particularly in those streets where they approach the pumping station and needing to be put at the great depth necessary to get the requisite fall. An increasing number of people connected with the system this fall, and all express themselves pleased with its operation. In those cases where no sewer connection is made the Board observes the strictest oversight to see that the ordinance requiring brick cesspools with water-tight bottoms is complied with.

Our streets, always noted for their uniformity, and finely paved, have been kept unusually clean the past summer by direct supervision of the Board. All the surface-water is carried off through a system of trunks that empty in the thoroughfare on the lea of the Island, and no surface-water is allowed to enter the sewers.

Within the last year the incandescent electric light has been introduced in our city, and is being very generally adopted by the hotels. This, one of the most important sanitary improvements of the age, is of particular value here where large numbers of invalids congregate.
through the winter and spring months. Gas is of good quality and used still in many public and private buildings.

Contents of cesspools and privy vaults, as well as garbage, is transported in sealed dunigans on scows to points on the mainland 25 and 30 miles distant from the city and composted.

There are several large charitable institutions here, among them a home for children, where hundreds of lives are saved every summer of children from the lower classes of the large cities. Besides the main building there are a series of small cottages for a mother and her children. All of these institutions are in first-class sanitary condition. The Mercer Memorial House for Invalid Women is the last institution opened, and is fitted up with every convenience and sanitary improvement.

All our larger hotels are well provided with fire-escapes.

No cemeteries or burial grounds on the Island.

Some comment was made last year concerning the death returns from the city, and in consequence a record was kept showing the proportion between resident and non-resident deaths. There are registered for the year 209 deaths; of these 102 were residents of the city and 107 were non-resident visitors. Atlantic City being a popular resort for invalids, particularly those suffering with chronic diseases, the death-rate is necessarily larger. In the summer large numbers of babies, suffering with the illnesses prevalent in the cities among children in the heated term, come here, some of them moribund when they arrive. Then, too, many of the deaths occur in the various institutions; and, secondly, many of the permanent residents have impaired lives. People who on account of chest, rheumatic, nervous, or other troubles, live here permanently because of the relief the climate affords them.

These regular “house-to-house” inspections are made each year by the Inspector of the Board, and all cases of disregard or non-compliance with the requirements of the Board are dealt with immediately. Besides the Sanitary Inspector, the city has an Inspector of vessels entering the port here.

Council pays all bills contracted by the Board from an appropriation made in accordance with an itemized list furnished by the Board of Health.

Most large hotels are heated by steam-heat, direct and indirect radiation; many smaller ones and cottages by hot-air furnaces and stoves. Good ventilation is sought after. Indeed, so assiduously are “modern improvements” and “sanitary appliances” sought after and introduced that foundation is afforded for fearing that in some instances the object in view is defeated.

There has been no epidemic disease of any kind during the year past. We are constantly exposed to contagious disease and have every year perhaps one or two cases of one or the other of them—brought here by patients suffering with them in the cities.

Egg Harbor City. - Report from F. Norman, Secretary.

Water-supply is mainly derived from wells. Driven wells are greatly in favor, and furnish an excellent water. There is a good natural drainage throughout the city, but the water level was very high this year and water came into many cellars.

The general health of the city is good. Contagious diseases have not occurred. One complaint of a nuisance at a slaughter-house has been made, and, upon notice sent to the owner, abated. A permit for location of a private burial place, within the city limits, has been asked for, but not granted by the Board.

The reports of previous years having rendered answers to the questions in relation to location, population, water-supply, etc., we would pass to the state of public health, the condition of which, during the last year, has been exceptionally good. Whilst it gives an occasion for profound gratitude in a sanitary point of view, it leaves us but little to report concerning medicine. Owing to the cool summer months there have been no intestinal diseases among children, nor any diseases incident to heat and drought. A mild form of pertussis in and around Pleasantville constitutes all there has been of an epidemic character.

The Board has exercised vigilance in reference to the proper rendering of vital statistics.

Our sanitary expenses have been confined to the necessary expenses of the local Board and the prosecution of a case, in order to abate a nuisance.
GALLOWAY TOWNSHIP. - Report from E. A. HIGBEE.

The water is all received from wells dug in the earth at various depths, owing to location. The water from the same is pure and healthy. Houses are well built as far as convenience for health is concerned, and are occupied by one family only, except in a very few cases. Not over one-half dozen, I think, in the whole township, has more than one family in them.

No disease among any animals excepting hogs; but among them there is a disease known as hog cholera, which has prevailed throughout the township and nearly all die that have it.

There has been no prevalent disease among any persons in the township this year.

HAMILTON TOWNSHIP. - Report from D. B. INGEBSOLL, M.D.

The water-supply is chiefly, almost entirely, from wells, and is generally good. Some, in the large villages, situated on the Great Egg Harbor river, obtain their supply from that stream. This water, according to the report of Prof. Geo. H. Cook, to whom a specimen was submitted for examination, "is remarkably pure and soft, and nothing better for household purposes." There are two artesian wells in the township, the one at Mays Landing, the other at Weymouth, from which a number of the families of each place is supplied. These two wells are supplied from the same stream. The water contains a trace only of iron and sulphur; thus the supply of good water is abundant. There are a few instances, however, which form the exception to this rule. In some tenement houses the wells are not properly kept in repair, consequently they are the general receptacle for toads and poisonous matters, which subject these families to disease. No house should be rentable unless it contains the general sanitary requisites, particularly a supply of good water.

There is no regular system of drainage or sewerage employed in the township. Many families adopt thorough plans for that purpose suited to their individual cases. Others adopt none. I have succeeded in many cases in convincing them of the necessity of this and in remedying the evil, yet there is much still to do. Cellars are usually dry. But little malaria.

The houses have but in a few instances basement cellars, and these not occupied. At times vegetables are stored therein.

LOCAL BOARDS OF HEALTH.

The excreta is disposed of in the usual way among farmers. Some cesspools are cemented with bottom, and cleansed frequently, others have open bottoms, and cleansed once or twice a year. The contents carted by the farmers and composted on their farms.

We have had no general diseases during the year. Even the diseases incident to the season have been slight. Our assessor is a faithful officer, and does all his duties well.

We have no slaughter-houses in the township.

We have in the township a large cotton factory and also a large paper mill. In the former about five hundred hands are employed, and some three hundred in the latter. In both of these factories as much sanitary care as possibly can be is taken. I have had occasion to speak with the superintendent of the cotton mill in regard to some sanitary matters, and he has always given me cheerful attention, and at once acted on my suggestions.

The schools in our township are in a good condition. Two are marked "first class" by the County Superintendent, and the other two as "good." The houses are well heated with coal and properly ventilated. This being the county seat, the jail and court house is situated here. The jail is of stone, with the jailer's residence in front, of wood. There are ten cells in the jail, five on each side, situated the one on top of the other. These cells are small, and in the summer are overcrowded. The ventilation and sewerage are good. The jail is kept in as good a condition as circumstances will permit. The court house and other public buildings are in the same condition as at my last report.

The sanitary expenses are met from the "incidental fund" of the township.

There have been no prevailing diseases during the year. Not a single case of diphtheria or typhoid fever. During the latter part of winter and during the spring months, we had a number of cases of pneumonia and other lung troubles. Inflammatory rheumatism, erysipelas and other acute diseases have been quite prevalent. And what is somewhat singular, the old chronic cases have been much aggravated.

While there is much still to do by our local Board of Health, we feel that we have accomplished much in this direction. We have a code, somewhat severe in some particulars, yet in no instance have we been compelled to enforce it. It is readily obeyed by the people as
soon as they can see its necessity. Education in this direction is much better than force, is our experience. And if the attention of the public could be drawn to this matter more generally, by circulars from the State Board of Health, distributed judiciously to many of the families, or by the press, or in any way that we may reach them, we think it would result in much good.

BERGEN COUNTY.

HARRINGTON TOWNSHIP. Report from Frederick Morris, M.D.

There is no system of public water-supply.

There is no system of drainage or sewerage. There are small drains on private properties, and a limited attempt to drain the low lands on some farms has been made. But there is a real need of opening and straightening the brooks flowing into the Hackensack through the swamps of Norwood and Closter. Those swamps would then become useful lands, and the unwholesome fogs and mists at present such a drawback to the healthfulness and growth of the above-named places would disappear.

The roads throughout the township, except in the immediate neighborhood of Closter, seem to undergo no improvement.

The sink or cesspool is generally in use. It would seem that the system of dry-earth closet has never been sufficiently brought to the notice of the public.

Sifted coal-ashes, dry earth of any kind, that swept from the road or dug from the yard or garden, being so easily procured.

Perfect deodorization and perfect security from feculent contamination of wells, although only a part of the advantages being inseparable from themselves, should be sufficient to recommend the earth-closet to general use.

A box to hold the dry material, a scoop to lift it and a receiving box under the seat, removable from the rear or side, is an arrangement much more economical than the loathsome and hideous privy-vault almost universal in the rural districts.

HACKENSACK. - Report from A. S. Burdett, M.D.

The water is excellent. It is obtained from the Hackensack river above tide-water and navigation, and pumped into a reservoir at an elevation of 110 feet above the town, and hence supplies the same by the force of gravity.

The drainage and sewerage are good. The sewers, as far as completed, are the best in quality, and in construction are equal to any in the State.

Refuse, garbage, etc., are removed by scavengers; and excreta, etc., by an odorless excavator.

One slaughter-house located within the town limits.

School-buildings, with respect to construction and ventilation, are excellent.

The present Board of Health, organized last May under the new State law, has passed several ordinances. The Board has become popular in the town and is doing good service.

PALSADIES TOWNSHIP. - Report from J. M. Simpson, M.D.

The health of this township during the past year has been very good indeed, and, according to the reports of the resident physicians, above the average. Diseases of a malarial type have been on the decrease for the last three or four years, and this year have been less than usual. There has only been an epidemic of mumps and whooping-cough, but no fatal cases of either disease.

There has only been two complaints made to this Board, and in both cases the causes of the complaints were quickly abated when the attention of the proper parties was called to them.

RIDGEWOOD TOWNSHIP. - Report from Thomas Terhune, Sec'y.

We have but little to report. The general health has been good. No prevalent disease has existed. We have no slaughter-houses. There has been no contagious diseases among horses or other animals during the year. There is a good natural drainage throughout the whole township.

UNION TOWNSHIP. - Report from George H. Cormack, Sec'y.

Water-supply is from wells and cisterns, which is generally good. There is no public drainage.
The laws of the Township Board of Health are the laws that govern all such bodies.

We have had very little malaria during the past year, and no contagious diseases.

BURLINGTON COUNTY.

BEVERLY CITY. - Report from A. W. Taylor, M.D., Secretary.

Located on the Delaware river, about fifteen miles from Philadelphia. Has a population of about 2,500, which is somewhat increased during the summer by transient residents. The climate is such as other places along the Delaware from Philadelphia to Trenton, the winters being a little cooler than those of the opposite Pennsylvania shore and the summers also cooler from the facts of the cool, westerly winds traversing a mile of space over the river; as the Pennsylvania shores opposite Beverly are high and free from swampy lands, the prevailing winds (which come from that direction) come to us free from marsh poison; and our own soil being high and dry, we are blessed with a greater exemption from malarial troubles than many places along river courses.

The surface has a level appearance, but in fact there is a fall of about thirty feet from the railroad or southern city line to the river or northerly boundary, and this in about half a mile, thus giving a good opportunity for drainage, either natural surface or by a system of sewerage.

Our water-supply is at present entirely from wells, but water-works are in process of erection, and by January 1st, 1887, we expect an abundant supply from the Delaware, which will be distributed from a stand-pipe or forced directly by the engines, if so needed, in case of fire.

Drainage is entirely of the surface, and so far no trouble has arisen from it except in isolated cases of gross carelessness. The introduction of water-works will probably force a system of sewerage upon us, as the present lack of method will be inadequate to the removal of an increased amount of water.

It would be possible to make the streets worse than they are, but it is by no means necessary or probable that they ever will be. The drive-way is worse than any of or than most of the county roads about us, and unpaved gutters make some portions of the streets a series of rapids with every summer shower. There are no public grounds; there should be a plot of ground reserved along the river as a public square as a means of public health as well as pleasure.

Our houses are mostly frame; a large portion of them owned by their tenants, and as a rule the grounds are neatly and healthfully kept.

The kitchen refuse is collected by neighboring farmers or by our own citizens living on the outskirts of the city. No hogs are, according to city law, allowed in the built-up portions, and the law is, with a few exceptions, respected. The privy refuse is collected by a colored citizen, and so composted on the extreme edge of the city as not to be either offensive to the eye or nostril.

We have no slaughter-houses in the city limits; no large animals are killed in our vicinity; all of our beef is purchased by the local butchers in Philadelphia.

There is but one manufactory in our town and that is of stockings and jackets.

One public school, a branch of the State Normal (the Farnum Preparatory), and two small private schools. The sanitary condition of each is, in the main, good.

One constable and one marshal. The only place of confinement is a series of six cells in the basement of the town hall; a place unfit to keep a prisoner in, in cold weather, having but little or nothing in the way of bedding, but a place in which the confinement is a mere matter of volition to a man of strength or ingenuity.

No fire guards or escapes upon any of the public or private buildings. Two fire companies have just been organized.

One small and rarely-used cemetery.

Public health laws and regulations are few, and up to the present time the scattered condition of the tenements has seemed to render few necessary, but the time is near at hand when a closer building up of the town will render more stringent laws and a positive enforcement of them necessary. Generally such laws as exist are respected, and any transgression of them is quickly remedied upon proper notice. Each year the Board of Health make a more or less general inspection from house to house, and notice being given of such a visit ten days or more beforehand everything is found in good condition.

Registration and vital statistics are complied with, as a rule, as far as the marriage, birth and death certificates of the State require.
As a general thing, we have very little trouble from contagious disease, and for several years there have been no epidemics, only isolated cases of such form of disease. There is no established system of quarantine and no pest-house or place to which cases of contagious disease could be transferred. For three or four years past there has been no compulsory vaccination; about that time all the school children that had not been were vaccinated.

There has been an inclination to reduce expenses for sanitary purposes to a low figure; in fact, there has been but little need of much expense, as the most of the sanitary changes and improvements have been such as were chargeable to and were met by private individuals. There has been a difference in views as to the financial rights of the Board of Health between the Board and the city council.

The Board believes that it has a right to a five-cent per capita appropriation from the city funds, which it shall possess to use as needed, but for the use of which it must report strictly and accurately to the city council.

The council seem to feel that they are to furnish the funds to pay the necessary expenses incurred by the Board, but that the Board is not to have the handling of the funds. At present it makes but little difference perhaps either way, but there is an opportunity here for a clashing in the future. Will not some one give us the correct status of the local Board in this matter?*

The year has been a healthful one; no epidemics have visited us. During July and August we had the usual amount of bowel troubles, which unfortunately were magnified immensely by a reporter of one of the Philadelphia dailies into a terrible epidemic. There were no more than the usual number of such cases and there was no epidemic. There were some severe cases of dysentery, but the majority of these yielded to treatment and were in almost every case traceable to errors of diet, exposure to excessive heat or some local sanitary defect. There has been less than usual of the fall fevers; no cases of smallpox; not more than half a dozen cases of scarlet fever, and but few cases of the minor contagious and infectious diseases of childhood. We have very few cases of consumption; in fact, it is a disease from which we have a remarkable exemption among our permanent residents, although persons afflicted therewith very often spend weeks or months with us and finally die here as they would anywhere else.

The pressing need of Beverly in the near future is a system of sewerage. The increased facilities which a supply of water (such as a public system of water-works affords) gives to servants and housekeepers for waste water and saturating the soil must soon efface the virtue of the soil as a filter and saturate it with vegetable and animal refuse in the shape of finely-divided waste from the kitchen. In many cases, too, the water-closet and bath-tub will, from the nature of the case, be emptied into a vault, generally very primitive in its construction and too close to the well of drinking-water. Such being the case, a system of sewerage becomes a measure of self-preservation. A poor substitute, for a time, for a sewerage system would be paved gutters, carefully graded, which would lead off all liquid refuse to the river.

CINNAMINSON TOWNSHIP. Report from ALEX. MARCY, Jr., Sec'y.

Nothing special to report, excepting history of a few cases of diphtheria, which is enclosed.

No epidemics, scarcely any malarial trouble, and not the usual amount of sickness. Death-rate low and birth-rate increased. A few cases of diphtheria, whose history was exceedingly interesting, and somewhat puzzling.

A young boy, six years of age, was taken suddenly ill on the day of July. He had been in fair health before this. Some time ago had had an attack of ulcerative tonsilitis, and the mode of invasion, symptoms and appearances of this attack seemed very like that. He was, however, immediately quarantined, and rigidly kept away from other members of the family. In twenty-four hours the throat had undergone a complete transformation, and we had developed an unmistakable and typical case of diphtheria of an adynamic type. The case was jealously guarded, all sanitary precautions were taken, and the boy came through safely, after an illness lasting three weeks. Suffered to a slight extent from paralysis.

Ten days after the entire disappearance of the false membrane, he was given an antiseptic bath, wrapped in a perfectly clean blanket, that had not been near the sick room, and taken into a different part of the house. The sick-room was immediately closed and thoroughly disinfected by burning roll sulphur. The bedding was put in a strong...
solution of hyd. bichlor., taken out and boiled, old things were burned—in fact everything destroyed that could possibly contain any of the poison. After two weeks he was allowed to go round cautiously, and in a week more was taken to Cape May. He was kept there two weeks, came home and remained a week, and then was taken to the mountains, and remained eight days.

Soon after leaving the mountains, a young lad of twelve was taken with what was supposed to have been diphtheritic quinsy, but which was true diphtheria no doubt, as it was followed by paralysis.

Did this child that had been rid of the disease for from six to seven weeks originate the trouble? But stranger still, this child, three weeks after coming home, infected his two brothers, that slept in the same room with him. The strange features of these cases are:

1. The origin of the first case. The child had not been away from home; there had not been a case of the disease in the neighborhood for years.

The child was surrounded by all the comforts and safeguards that intelligence or wealth could suggest.*

Living in a new house, where every attention had been paid to the sanitary arrangements—in fact a very model of perfection—a large house, with open fire-places in every room as well as in the halls, with Waring’s system of drainage and plumbing thoroughly and practically introduced.

With no possible source of contamination of the drinking-water, and which water, by analysis, proved to be unusually pure and wholesome.

A long time before, the boy had suffered from ulcerative tonsilitis, and the beginning of this attack seemed to have the same mode of origin, and closely resembled that disease.

Could there have been something in the boy’s condition which caused the simple ulcerative process to be changed into a specific inflammatory condition, with the evolution of the true diphtheritic poison?

Or is the difference between ulcerative tonsilitis, or “diphtheritic..." as it is often called, and diphtheria one of degree rather than of kind?

2. Is it possible for the poison of the disease to remain about a person for eight or ten weeks after full convalescence has been reached?

If so, when are you safe in letting a person who has had this disease mingle with those who have not?

Such a history as this inclines one to the belief that diphtheria does not always arise from a specific poison, and that it is possible for a person to have the genuine disease without having been brought in contact with the poison from a preceding case, and that, too, when the person is surrounded by the most favorable hygienic conditions. Also as to time of isolation and quarantine, certainly not a less period than three months will suffice, and even four months would be better in the question of when the child might be permitted to attend school.

FLORENCE TOWNSHIP. — Report from Dr. Baker.

It is situated on the eastern banks of the Delaware; population, 978. Climate temperate.

Sandy loam, with clay bottom. It extends along the river about three miles, and about two and one-half miles back.

The houses are mostly frame, with cellars. Are largely used for storage for vegetables. One family in a house. There is no Inspector.

Diseases of this place are mostly of malarial fever.

NEW HANOVER TOWNSHIP. — Report from George C. Davis.

No contagious diseases, and the health of the township has been generally good the past year. Diseases among animals have been quite prevalent, especially among the young swine. In a herd of my own, taken with the disease, I commenced using the different powders advertised for the cure of diseases in swine, with little or no advantage. I finally adopted, with marked results, a remedy of my own of sulphur, Spanish brown and salts. It seemed to cure when all other remedies failed. The way I administered the above is as follows: Five tablespoonfuls, very large, of sulphur and Spanish brown...
each, and one pound of salts to a barrel of swill, twice a day. There has been an epidemic among turkeys worse than the chicken cholera.

I have noticed one thing this year as regards malaria in our township. The inhabitants for a number of years have been from time to time suffering with it throughout the entire township, but especially along creeks and ponds, the cause of it being the water getting very low, thereby becoming stagnant and polluting the air, and so breeding disease in the form of malaria. One pond I noticed in particular for a number of years. There is a farm situated by the side of it. There was a family moved there about five years ago; the water in it became very low, turning a greenish color in summer. One of the family was taken down with malarial fever, and then another, until it went through the whole family. Three years later there was another family moved on the same farm, and they all passed through the same ordeal. This last summer the creeks and ponds were swollen to their utmost capacity, and the consequence has been no malaria in the township the past summer. Therefore it is proven that stagnated water breeds disease. This should awaken in the people an interest for having good drainage throughout the country to give them health and length of life, to improve the appearance of their farms, as well as the pecuniary advantage that would be derived therefrom. There are acres of swampy land which hold stagnant waters in dry seasons of the year, which, by a little expense, would pay largely for the labor expended on them, and the owners would be highly gratified by the improvement of the sanitary condition of the neighborhood. I know some instances where there are small cesspools running up almost to the very doors of dwelling houses. I think when people are awakened to the fact of their own danger, and that of the public in general, there will be more interest manifested in drainage.

NORTHAMPTON TOWNSHIP. Report from Chas. E. Travis, Sec'y.

The water-supply is furnished by a private incorporation to about one-third of the dwellings and is cedar-swamp water, pronounced by the physicians very healthy. It is dark in color and soft. The balance is supplied by wells, is hard and considered good. The reservoirs and pipes are cleaned from once to twice a year.

All the houses have cellars; they are generally dry and used for storing household supplies.

LOCAL BOARDS OF HEALTH.

There are several slaughter-houses. They are kept passably clean, no complaint having been made to us by neighbors to them.

There has been a new school-house built. Its sanitary condition is first-class, is well-lighted and ventilated; considered the best in the county.

The prevalent diseases for the past year have been intermittent fevers and other forms of malarial trouble. There have also been some few cases of diphtheria and typhoid fever.

There has been quite a number of complaints received by the Board, and in all cases they have been attended to immediately and satisfactorily to all parties, excepting one complaint as to a pig-pen, which the Board is making some provisions for.

CAMDEN COUNTY.

CAMDEN. Report from Septimus Knight, Inspector.

Reservoir supplied from the Delaware river, above the city. Supplied by the city. The first six wards are mostly supplied from this source. The Seventh ward has about two-thirds of its supply from the city water works, the balance from wells. The Eighth ward mostly supplied from wells.

As a general thing the drainage is good, the outlet being the Delaware river and Cooper's creek. Much could be done by this city to better the drainage by having all streets guttered with stone. In numerous places where there is no stone gutter, quagmires are formed which cause the foulest odors to be exhaled. There are in different parts of the city vacant lots which, from their location and surroundings, are at times covered with stagnant water, producing complaint and disease; but the Board of Health are using all the means in their power to correct this condition by filling up.

Refuse which is cleaned from the streets is deposited in designated places within the city limits. The streets are cleaned at intervals, but the large surface of cobble-stone pavement, irregular and uneven in many places, should receive more frequent attention than is given, for the securing of health and comfort; in fact, all the streets and gutters should be attended to oftener than is the custom, especially in the summer months. Excreta is removed from the city in tight box wagons, or by air-tight barrels, when required, by individuals or by order of the health officer, upon complaint.
Slaughter-houses are generally kept in good condition, and all drain into the sewer. A great many of them have arrangements for rendering out fats collected from time to time which, in most cases, has been complained of as a nuisance to the Board of Health, and they have now under consideration the best way to get rid either of the bad smell or the fat-rendering part of the establishments.

DELAWARE TOWNSHIP. - Report from Joseph G. Evans.

No artificial system of drainage or sewerage is employed. One hundred and sixty-seven acres is tide marsh, near Camden.

There are few tenants. The houses are mostly frame, with a few brick and stone structures. Cellars are the rule. There is no inspection without complaint being made.

Refuse is either destroyed by fire or scattered over the land. Human excreta is confined to boxes or shallow wells, permitting frequent removal for conversion into compost or manure. No deep wells are known to the committee.

GLOUCESTER CITY. - Report from J. A. Wamsley, M.D.

The city schools are heated by stoves and are well lighted. The water-supply is from driven wells, and mostly surface-water is obtained for drinking purposes; although a good distance from cesspools, this should be remedied and the water taken from the city-water-supply. The drainage and sewage of the city schools are in a fair condition.

There are three burial grounds used within the city limits but are a safe distance from the built-up portion of the town. Two of the cemeteries are well taken care of by the keepers; the graves are five or six feet deep and are considered sufficient.

The disposal of house refuse is not governed here by any special legislation or ordinance, and often this refuse and garbage is deposited on vacant lots, alley-ways and sometimes in the street, and some decided, definite action should at once be made by city council.

Now we arrive at a subject most important to Gloucester City. The topography of this city is favorable, in general, to good drainage if proper means were employed to effect it, but, unfortunately, little effort has been made yet to effect better drainage and sewage; but three short culverts have yet been built in the town. Almost all of the cesspools are simply sunk in the ground and are not cleaned more than once a year, and others not in years until complaint is made and the owners are obliged to comply.

A Board of Health ordinance, a very important matter of legislation here for the city council to act upon, should at once engage the attention of all—to form a Board of Health directly under the State law. The laws and regulations of the present Board are very deficient and have outlived their usefulness, even if they were ever of any value.

Gloucester City has been remarkably free from epidemic diseases for the past year, excepting the prevalence of diseases incident to childhood, as pertussis and measles.

HADDON TOWNSHIP. - Report from Dr. F. E. Williams.

Haddonfield's water-supply is still as it has been in the past, from wells, though by the first of the coming year a water company will supply the town with a service of water remarkably free from organic matter. At present there is but little in the town but what is contaminated to a more or less degree by cesspools, &c. In some parts of the township the water is slightly impregnated with marl.

The drainage and sewage is very poor, but this Board has compelled the cementing of cesspools as rapidly as possible.

Refuse and excreta of the town have been the subject of much care to the Board, who have ordered the former to be carted away from the town at once, and the latter to be confined in cemented cesspools.

There is a slaughter-house upon the outskirts of the town, but the owner has taken proper precautions so no trouble exists.

There are five public school buildings in the township, and the various Boards have used every precaution to insure good sanitary conditions, both as to ventilation and privies.

A year ago the Board, finding so many nuisances of great importance existing, enacted several ordinances upon the various necessary subjects, and has rigidly enforced them. At first they were but partially understood, as were the legal powers of the Board, but they now have the support of nearly every one.

REPORT OF INSPECTOR AND TOWNSHIP PHYSICIAN.

The last twelve months, from October 1st, 1885, to October 1st, 1886, have been remarkably healthy ones, there having been no local epidemics of any kind, and but few cases of contagious diseases.

There has been reported to the Board of Health, in compliance
with an ordinance adopted last year, twenty-one cases of diphtheria and diphtheritic sore throat, and two cases of scarlet fever. In only one instance were the ravages of diphtheria marked, and that in a poorly-kept tenement house in the rural portion of the township, where four deaths occurred out of five persons affected with the disease.

There have been thirty-six inspections of properties made by the Inspector, the nuisances to the public health consisting of pig-pens, cesspools, privy-vaults, street gutters, manure piles and dead animals. These complaints were at every meeting reported to the Board, and the decisions of that body were speedily attended to by the property owners, and in no instance was trouble given nor unnecessary delay indulged in.

There has been a decrease of diseases of malarial origin during the past year. Most of the cases that have appeared have been decidedly of the remittent type, there seldom being any marked chill, fever and sweat, but an increased pyrexia at certain regular periods, and a less marked fever all through the intervals, mild congestion of the brain, with severe cephalgia and vertigo being almost always present during the acme of the disease. These remittent remittents showed a decided tendency to run into a typhoid condition, and these typhoid-remittents have been more numerous than heretofore. Haddonfield always has been, and is now especially, exempt from the true typhoid fever.

Bad sanitary arrangements, particularly in regard to the improper storage of the refuse of the kitchen, will in time contaminate the (at present) good well water, as it has already done in several wells in the town; it is therefore with delight that we hail the prospect in the near future of obtaining an ample supply of pure spring water, delivered through the town by a stock water company at a reasonable rate.

This plentiful supply of water may become a curse to the inhabitants if some means of getting rid of the waste is not obtained, for it will overflow the surrounding grounds of each house so supplied, or the gutters in the adjoining streets with filthy and soon to be stagnant water.

A general and complete sewerage system through the whole town is the only preventative, for which the location of Haddonfield is admirably adapted, being situated in a rolling country, with every natural facility for drainage into a large stream flowing direct to the Delaware.

BOROUGH OF MERCHANTVILLE. Report from Wm. H. Moses, Sec'y.

The water-supply is wholly from wells or cisterns, although in about a month a public supply of the finest spring water will be introduced to all desirous of using it.

The general health of the borough has been good and no epidemic of contagious disease has occurred.

CAPE MAY COUNTY.

CAPE MAY CITY. Report from Henry A. Kennedy, M.D., Sec'y.

The water-supply of Cape May City has been increased during the past year by the building of new works by the city, consisting of a series of 6-inch tubular wells, 50 feet apart, connected to a powerful steam pump, by which the water is forced either directly through the mains or into an elevated tank for distribution, as occasion may require. The water is remarkably pure and soft, free from color, taste or odor. The site of the works is on a farm, one mile north of the city limits, beyond all danger of contamination.

The Board appointed a sanitary or health Inspector, for the months of June, July, August and September, to inspect all nuisances complained of and make weekly inspections of all hotel premises and the city in general, with power to abate, or cause to be abated, all nuisances found.

There were thirty-five nuisances abated during the "season," mostly caused by depositing garbage and filth in back yards and out-of-the-way places.

All cesspools are required to be cleaned at night, by first obtaining a permit from the Board.

There are no slaughter-houses in the city, and no swine are permitted to be kept within the city limits during the summer months.

There has been no epidemic or prevalent diseases during the past year, with the exception of a few cases of whooping-cough. The health of our city has been above the general average.

DENNIS TOWNSHIP. Report from Morris Warwick.

Contagious diseases are treated by township physicians with the greatest care to prevent spreading; persons affected are usually kept aloof from their neighbors.
No particular disease has been more prevalent than another. One case of small-pox; got well.

HOLLY BEACH CITY.
Report from William Paul, Sec'y.

Public health good. Five cases of typhoid fever; no deaths. No laws or regulations.

LOWER TOWNSHIP.
Report from Wm. C. Rutherford, Sec'y.

Swine disease is pretty bad, but not so bad as last season. It is supposed that about half the number died, compared with last year. The disease is called hog cholera.

Public health laws and regulations are looked into by our local Board, and at any meeting requiring our consideration we refer to the State laws and instructions of Secretary of State Board of Health.

Registration and vital statistics are sent to the Secretary of the Board of Health for this township monthly by the assessor.

There have been no prevalent diseases this year among our inhabitants. It has been considered by all that it has been an unusually healthy year. The hog disease has not been so bad as last year, although some of the farmers have lost all their hogs. It has been mostly confined to the vicinity of Cold Spring. As the season advances it begins to subside.

MIDDLE TOWNSHIP.
Report from Stillwell H. Townsend.

The water-supply is mostly from dug wells, although quite a number of people use water from tubular wells. The water from them has generally the taste of iron.

Cellars are generally dry except in extreme wet weather. There has been but very little malarial fever the past year.

Houses do not generally have cellars, although there are quite a number in the township. They are mostly used for the storage of vegetables. About eight houses are occupied by two families.

OCEAN CITY.
Report from J. S. Waggoner, M.D.

The water-supply is from cisterns, with a few exceptions. Not more than two families are supplied from one cistern. It being rainwater, is scarcely ever discolored, and only for a short time, when caught from new wooden roofs. There are some two or three families that depend on wells for water.

The only system of drainage we have is by gutters on sides of streets, which gives us ample drainage, there being plenty of fall. There are no cellars, except on the highest ground; the number does not exceed six. Malaria is unknown here.

Cesspools, as built here, are cemented on sides and bottoms. The contents are removed by dipping out into barrels for the purpose and removed a safe distance from city and covered or composted.

We have had no prevailing diseases; in fact, we were almost entirely exempt from diseases of any kind except occasionally a little derangement of the bowels, which yielded promptly to mild treatment. No seaside resort on the New Jersey coast, I can safely say, for the healthfulness of the place, can rival us, making it a desirable place for the pleasure-seeker, and especially the invalid.

SEA ISLE CITY.
Report from Geo. W. Urquhart, M.D.

All refuse and excreta is removed twice a week, during the summer months, from the island, in tight waggons. No excreta is allowed to enter the ground; boxes or receptacles are raised 6 inches above the surface, therefore, allowing free circulation of air, also inspection.

CUMBERLAND COUNTY.

CITY OF BRIDGETON.
Report from Charles E. Sheppard.

During last year the city has, in general, been in a healthy condition, with no prevalent diseases.

Nearly all the cases that come before the Board are minor cases, being principally filthy privies and out-houses, with some complaints against pig-pens and slaughter-houses.

During the last two or three years the Board has secured the removal of all slaughter-houses, except one, beyond the built-up portions of the city.

DEERFIELD TOWNSHIP.
Report from Dr. Chas. C. Phillips.

During the past year no epidemic of any kind whatever has visited us. We have had but few cases of disease of either a bilious or
typhoid nature. Our township is situated in the northern portion of Cumberland county, and being about the most elevated of any in the southern portion of the State, with excellent surface drainage, no stagnant water whatever in the township, malarial diseases have not much sway amongst us.

Our water-supply comes principally from wells through the medium of the bucket and windlass or the wooden pump, and the water is of an excellent quality.

The refuse and excreta is generally carted as manure onto the land, and being plowed under and mixed with the soil, loses its deleterious effects and becomes a fertilizing agent in agriculture.

I do not think that this township is second to any in the point of health, and it will also compare favorably with any other both as regards cleanliness on the part of its inhabitants and a regard by them of all sanitary regulations.

Hopewell Township. - Report from Charles H. Dare, M.D.

The past summer has been remarkable for its healthfulness, very few cases of bowel affections among children and none fatal, as far as I am aware. During the past winter there were a number of cases of diphtheria, some proving fatal from edema of the glottis.

The hog cholera that prevailed to such an alarming extent during 1884-5, is now extinct; I do not think there has been a new case in the township for a year past. There have been no complaints entered to the Board during the past year of nuisances; vaccination is not looked after by the Board of Health.

Landis Township. - Report from Theo. Foote, M.D.

In a large part of the dwelling-houses outside of the borough the cellar is used for the storage of vegetables. No yearly house-to-house inspection.

The slaughter-houses have been inspected several times during the year, and the keeping of hogs to eat the offal, etc., has again been prohibited. How to dispose of the offal, etc., so as not to be a nuisance to the neighborhood, has received the attention of the Board. Arrangements have been made with some of our farmers to take the

blood and offal and use them for fertilizers. All the slaughter-houses have complied with the request of the Board and removed the wells at least 50 feet from the buildings, so that they have now good water for the animals, etc.

The Board has given attention to the out-buildings and wells connected with the public schools. The wells, in several instances, have been cleaned, cemented and pumps put in. With open wells we have found that in some way pieces of clothing, sticks, dead rats, mice, etc., get in, and we have recommended that all school wells be cemented at least 3 feet from the top, and also, that the well be so enclosed as to prevent the throwing into it of any article. The Board's preference is to put in a pump.

The borough of Vineland has a Board of Health separate and distinct from the township Board.

Millville. - - - Report from L. H. Hogate.

There are excellent water-works in the city, owned by a private corporation, but for the most part the citizens depend upon wells for the water-supply, and a very excellent quality of water prevails.

We have no system of drainage or sewerage; all of it is surface drainage. The subject of sewers is being agitated to some extent.

Cesspools are cleaned at night and during hours prescribed in ordinances of the city. Garbage and refuse of all kinds are removed far into the outskirts of the city.

All our school-houses are well lighted, but the ventilation might be greatly improved. Most of the buildings (eleven in number) have been built for a number of years, and it is hoped with all new buildings better attention will be given this important matter.

There have been no prevalent diseases during the year.

Millville Twp. - Report from Theodore C. Wheaton, Sec'y.

The supply of water comes from surface wells and water-works owned by a private company; the water coming from Wood's pond, which is the Maurice river dammed at Millville, the head streams of which come principally from cedar and spruce swamps. The water is said to be very pure. It often has slight reddish or swamp-water color but no
peculiar or offensive taste. It is used more or less by about half the houses, many only using it for sprinkling purposes. The well-water is excellent, and is principally used for household purposes, although the hydrant is growing more and more into favor. The pond-water contains very little sediment, and the stand-pipe, which is about ten feet in diameter and one hundred and twenty-eight feet high, was cleaned after standing five years, when only one-and-a-half bushels of sediment was found in it. The delivery is through a perfect circulating system of pipes, which does not admit of any stagnant water. There are blow-outs, however, which are occasionally used to cleanse the pipes. No sewage of any kind empties into the river above the point of supply. There is no cistern-water used.

We have nothing but surface drainage, but we think the day is not far distant when a system of sewage will become necessary. Our cellars are dry. We have a few small swamps near us, but scarcely any malaria for past three years.

The houses about all have cellars but are scarcely ever occupied. We have very few tenement-houses of more than two families. There is no yearly house-to-house inspection. We have scarcely any cesspools; there is an occasional barrel sunk into the ground with both heads out.

There has been no disease prevalent this year, although we have had some scarlatina, measles and whooping-cough. Very little typhoid or malarial fevers. The writer had two cases in one family (father and son) clearly traceable to fecal emanations. They worked in a portion of the bleachery, in a room by themselves, located adjoining the privy, which is used by a number of hands in the place, and at times the fecal smell was very offensive, there being holes in the floor of their room immediately over the fecal accumulations. They worked together here for months and were finally taken down about one week apart with a violent type of typhoid fever. The father was a great deal better on the twenty-first day, but relapsed and the fever ran on to the forty-second day. He finally made a good recovery. The boy had fever thirty-two days and was delirious most of the time. He also made a good recovery. Their residence is a new house, with good water, cellar dry and everything kept nice and clean and privy at least one hundred feet from house well. The father, when first taken, said all he could taste or smell was like his room where he worked, which shows a complete saturation with the poison.

Borough of Vineland. - - Report from Dr. Bidwell.

In Vineland, our Board of Health, recognizing the dangers of the ordinary village privy and of privy-vaults, adopted, in 1883, the system of tubs or buckets, to be frequently emptied, with the removal of the contents entirely from within the borough limits.

Although water-works have since been introduced, a considerable portion of our inhabitants continue to depend upon their individual wells, and the system of privy-buckets is still enforced. Indeed, the present Board of Health, and, it is believed, a majority of our citizens also, are now so well convinced of its value as a sanitary measure that it would be retained irrespective of any necessity of protecting the water-supply.

A brief account of the practical working of this system here and the difficulties encountered in efficiently carrying it out may be of service to other Boards.

Our present ordinances require simply that the receptacles under the privy-seat shall be water-tight, of sufficient size and number to accommodate the deposits for at least one week, but not too large to be conveniently handled; that they shall be elevated not less than six inches above the ground surface, and be protected from roof and storm water, and that they shall be kept always in good repair and in proper position.

It was at first required that every deposit should at once be covered with fine, dry earth, sifted coal ashes or similar absorbent. This, certainly the ideal method, is still strongly recommended by the Board and is considerably employed. But it was found, as might perhaps have been expected, impossible to enforce this provision uniformly. The lower classes could not be induced to take so much pains, and many of the more intelligent and law-abiding merely made a show of doing so.

Our ordinances were persistently advertised, but many failed, for one reason and another, to provide their privies with receptacles.

Then the Board sent individual notices to the delinquents, in some instances many times repeated, but with only a moderate degree of success.

Finally, after it was thought that "moral suasion" had been thoroughly tried, we appealed to the law to help convince the obstinate ones. Several well-to-do offenders were successfully prosecuted, under the act relating to Boards of Health, before a justice of the peace. The
uniform result was a fine of ten dollars, with costs of suit, imposed upon the defendant.

One case was appealed to the court of quarter sessions, where Judge Reed affirmed the judgment in our favor. This case caused the Board much trouble and considerable expense, but it was worth all it cost, for since that time an intimation from the Board of Health has had more practical and immediate effect than could be produced before by the most impressive warning we could devise.

People were convinced by these prosecutions that the Board of Health had power to enforce their ordinances, and that fighting them was a losing and expensive game; and as by the constant agitation public opinion has been pretty well educated up to the point of sustaining the Board in this matter, there is now very little trouble in enforcing the privy ordinances, and legal measures will probably not soon be again required.

The most satisfactory receptacle, in our experience, is a hard-wood tub or bucket, tarred inside and out. They are more durable and less expensive than metallic pails. We buy at the groceries empty butter-tubs (oaken ones only, for those of soft wood soon fall to pieces,) and have a blacksmith put on an iron hoop and coat them with gas-tar. Such a tub will last several years if protected from the sun. The Board furnishes them, to those who wish, for fifty cents, which price allows us a profit of a few cents upon each.

Our scavengers like them as well without handles, so we save their expense.

These tubs are set upon a shelf under the privy-seat so as to be directly under it and close up against it.

For a time the privies were kept clean without expense, either direct or collectively, the borough being divided into districts, and a farmer agreeing to remove the contents of the buckets as often as required in the district assigned to him by the Board in return for the exclusive right to the privy-manure of that district.

This plan, however, worked very poorly, and with a great deal of friction.

It would seem at first thought that the privy-material would be so valuable a manure as to amply repay the cost of collection and transportation.

But it is not so under the bucket-system. There is so little at each privy that it takes considerable time to collect a load, and the buckets being water-tight all the liquid has to be transported as well as the solid matter. Where it is deposited directly upon the ground, or into leaky vaults, the less valuable urine soaks away into the earth, leaving only the more valuable and more easily handled fecal matter for the scavenger to carry away.

The experience of our farmers, also, seems to indicate that the manurial value of privy-deposits is not so high as is generally supposed. At any rate, they seem pretty generally agreed that it costs more to collect it than it is worth to them.

They could afford to collect it in the winter when horses and men are idle, but in the spring and summer, when the work most needs doing thoroughly then there is most to be done at home.

Another trouble was to get faithful drivers for the carts. Reliable men who would do such work for the wages the farmer could afford to pay are scarce.

Then again it was found that some who for years had been content to make their deposits upon the ground and leave them there more or less exposed to the weather, and within a few feet of their well, developed, after the introduction of the new system, a great anxiety to have their privies kept scrupulously clean.

This class, with the proverbial zeal of recent converts, made frequent and often unnecessary complaints of the neglect of the scavenger.

He, as his work was in a measure gratuitous, on his side felt sensitive to ill-deserved blame, and the Board found it well-nigh impossible to so act the mediator as to prevent ill-feeling, even if it could secure reasonably efficient work.

It had long been considered by the Board that eventually the work must be paid for by contract, that the contractor might be held to strict accountability for the performance of his duties.

 Buckets allowed to run over frequently are greater nuisances than the old vaults and "dug-outs" they replaced, and it was very evident that something must be done to secure proper attention to them or the system was doomed to failure.

Finally, when two of the scavengers resigned and their places could not be filled, the borough council was induced to appropriate a sufficient sum, and to make contracts by which the contractor binds himself to empty every privy at least once a week, and oftener if necessary to prevent running over.

Payment is made every three months, and the contractor's bills
must be approved by the Board of Health, so that in case the work is slighted, though not to such an extent as to render the contract void and subject the contractor to the forfeiture of the “liquidated damages” provided, a part of the money may be withheld.

Under these contracts we have succeeded in getting the privies pretty well attended to, and the cost to the tax-payers is at present less than fifty cents a privy per annum.

Some people were at first addicted to throwing coal ashes, tomato cans, broken glass, and like refuse into the privy-buckets as the readiest way of disposing of them. This of course was very objectionable to the farmer who used the material for manure, so it was prohibited by ordinance.

Now, when the scavenger finds any considerable quantity of foreign matter in the buckets, he refuses to empty them, notifies the Board, and the Board sends a copy of the ordinance to the offender with a notification that his privy must be cleaned at once at his own expense.

Another ordinance provides that no discharge from a person suffering from any contagious disease shall be put into the privy-buckets, but shall be either destroyed by fire, or disinfected and buried as remote as possible from a well or dwelling-house.

In case of the prevalence of any serious epidemic, say of typhoid fever or of cholera, the Board would probably order the disinfection at frequent intervals of the contents of all privy-buckets.

It is believed that it can be done much more efficiently in them than in any vault, however well constructed. Where privy-deposits are suffered to fall directly upon the ground, thorough disinfection would, of course, be found very difficult if not impossible.

ESSEX COUNTY.

BLOOMFIELD. - - - Report from WM. H. WHITE, M.D.

The principal complaints during the year have been about cesspools and privies, and in all cases the inhabitants, when notified, have abated the nuisance at once.

IRVINGTON. - - - Report from JOSEPH L. WADE, M.D.

The usual water-level secures dry cellars. Not any swamps in our vicinity of any extent. Near South Orange township line there is swampy ground, drained by a ditch running through our incorporated district, opening into the Elizabeth river; another below the Newark city line, drained by sewers located in Newark.

We are free from malarial disturbances.

Cesspools, stone sides laid loosely, cemented in some cases, open bottom; emptied by excavators or by hand-dippers; carried away in closed barrels, between the hours of 8 P.M. and 4 A.M. Contents utilized by gardeners and truck farmers in vicinity. Open cesspools are more in vogue, easily cleansed and less danger.

MILLBURN TOWNSHIP. - Report from ISAIAH WILLIAMS, Sec'y.

The local Board has this year been very effective, and designated me to attend to nuisances during the hot weather. I abated a number of cases—hog pens, privies and dead animals—firmly establishing the authority of the Board at the cost of $3 to a constable, which was charged to township expenses.

NEWARK. - Report from DR. DAVID L. WALLACE, Secretary.

The population at this date is estimated at 159,018.

No provisions have been made as to a new water-supply. Since my last report a Board of Pollution has been established, made up of certain members of the Newark Aqueduct Board and the Jersey City Board of Public Works. They have appointed an Inspector and furnished him with a launch to patrol the Passaic, between Newark and Paterson, to ascertain all points of pollution with a view to having them removed.

Since the 1st of October, 1885, there have been 7.86 miles of brick sewers and 6.18 miles of pipe sewers laid, making at this time a total of 52.86 miles of brick and 15.18 miles of pipe sewers established in this city. The intercepting sewer that I spoke of as in process of building last October is not as yet completed. It will be in working order by January 1st, 1887, and there is every reason to believe that it will accomplish all that is claimed for it.

Since last report pavement has been laid in a number of streets. On Broad street, from William to Lincoln Park, the old cobbles have been replaced with oblong granite blocks. A distance of about three miles is provided with this pavement.

Since last October 8,608 houses have been inspected, with the find-
ing of 1,202 nuisances; of these 1,076 have been abated. In addition to this 845 cases of defective plumbing and drainage have been rectified.

At the present time an ordinance is before the Board requiring that all privy-vaults and cesspools shall be water-tight, and that on streets in which a sewer is laid they shall not exist. This will in all probability be passed after which one of the greatest evils I have had to contend with will be under control.

Since my last report, as you are well aware, by a decision of the Supreme Court, the Newark Board of Health was declared not to be a Board working under the general health laws of the State, and it was obliged to fall back on the city ordinance of 1884 to maintain an existence. As soon as the new law passed by the last Legislature went into effect, we took advantage of it and reorganized under its provisions. Since that time we have had to do over again all that was undone by the decision of the court, but we are now in good working order, with the mass of our citizens giving us their cordial support. We have not as yet passed many ordinances, but the first to be passed was the ordinance regulating the emptying of vaults and cesspools, which was the cause of our overthrow. The other ordinances passed are those giving us power to quarantine animals when found necessary; prohibiting the storing and keeping of old rags, bones, &c.; regulating the sale of meats, fruit and vegetables, and ordering condemnations when found necessary. An ordinance regulating contagious and infectious diseases has passed its second reading, and will be read on its final passage in November.

SUMMARY OF ALL WORK DONE FOR THE YEAR.

Number of notices served for abatement of nuisances... 2,688
Abatements ... 2,297
Number of notices served for rectifying defective plumbing and drainage... 1,130
Number of cases rectified... 962
Number of sewer permits granted... 944
Number of permits granted for cleaning privy-vaults... 2,582
" " " cesspools... 656
Analyses of milk................................. 34
Persons found unvaccinated... 3,388

If we add the number of unvaccinated persons reported this year to those of last year, we will have a total to date of 4,618. The names of all these persons, with their residences, are on record in the office of the Board. At our meeting of this month I suggested that the names and addresses be given to the eight district physicians, with instructions that they call at their homes and offer them free vaccination. The members of the Board were favorably impressed with the suggestion, and I think at the next meeting this will be ordered.

The work of milk inspection is being prosecuted with vigor, and at the present time the quality of this article is very good.

The Veterinary, Meat and Food Inspectors are doing their work in a very thorough manner. The ordinance recently passed ordering quarantine of animals, when necessary, has had a very salutary effect, stopping, to a very large extent, the killing of animals, the meat of which is unfit for human consumption. The following condemnations have been made for the year:

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>3</td>
</tr>
<tr>
<td>Sheep</td>
<td>83</td>
</tr>
<tr>
<td>Calves</td>
<td>60</td>
</tr>
<tr>
<td>Hogs</td>
<td>4</td>
</tr>
</tbody>
</table>

ARTICLES CONdemned IN MARKET.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>2,524</td>
</tr>
<tr>
<td>Veal</td>
<td>1,190</td>
</tr>
<tr>
<td>Mutton</td>
<td>872</td>
</tr>
<tr>
<td>Pork</td>
<td>550</td>
</tr>
<tr>
<td>Sausage</td>
<td>505</td>
</tr>
<tr>
<td>Poultry</td>
<td>3,317</td>
</tr>
<tr>
<td>Fish</td>
<td>2,075</td>
</tr>
<tr>
<td>Rabbits</td>
<td>126</td>
</tr>
</tbody>
</table>

The above is a summary of the principal work accomplished by our Board for the year just ended. We hope, by the first of the year 1887, to have most of our ordinances passed, after which they will be formulated in a code and published.

GLOUCESTER COUNTY.

GLASSBORO TOWNSHIP. - Report from JACOB ISZARD, M.D., Sec'y.

The drainage is not so very good, on account of the flatness of the soil. Since last year (1885) there has been a terra cotta pipe laid on the east side of the town, which has improved that part of the town.
very satisfactory to the inhabitants. The water-supply is from wells and of a good quality.

The streets and public grounds are kept in good condition.

The refuse is fed to pigs and chickens. The excreta is hauled out of the town by farmers, who ask to remove it on their farms as a fertilizer, and it is generally done in the winter time.

The manufactories and trades are principally the making of glass, window-lights and bottles. During the present year there has been a shoe factory planted from Philadelphia, employing about forty men and women.

There have been no contagious diseases during the past year.

There has been a decrease of malaria the past year.

HARRISON TWP. - Report from E. E. DeGroff, M.D., Sec'y.

Our water-supply is principally obtained from wells, although there are a few families who depend upon cisterns, during the winter months, for their supply of water. During the past year the water has been excellent and free from contamination, and with few exceptions there has been an abundance of it.

We have no sewerage system other than that provided by nature. Our village being located on a hill, all impure substances, after a heavy rainfall, immediately passes into a stream or mill-race in the center of the town.

Our streets are wide and are kept in a clean and healthful condition, no garbage or decomposed vegetable matter being permitted to remain in them at all.

Many of our houses are poorly ventilated in consequence of the windows in the older buildings not being arranged so as to lower from the top. All the houses have cellars, some of which are used for the storage of vegetables. There is no annual house-to-house inspection.

Privies have open bottoms, and the excreta is removed by horse and cart and buried in the earth.

Our township has been remarkably free from malaria this year, and the only prevalent diseases that we have met with has been tonsillitis and dysentery. There has been no hog cholera and no pleuro-pneumonia among cattle in this community that we have been informed of.

LOGAN TOWNSHIP. - Report from S. B. Platt, Secretary.

Drinking-water is derived entirely from wells. There is no taste of iron, and water is principally hard. Nearly all houses are provided with tanks or cisterns in which rain-water is caught and used for washing purposes.

There is no drainage distinct from sewerage, and the water-level is such as to secure dry cellars generally. Where cellars are subject to overflow, tile are laid to a lower level which drains the same. There are very large swamps in the township, some of them very low and malarial, and malaria is frequent.

Houses generally have cellars which are not much used for storage of vegetables, as nearly all of the farm-houses or dwellings have separate cellars for the storage of same. There are not more than two or three tenements that have more than two families. There is no yearly house-to-house inspection.

No sewers used. No cesspools. Water-closets are to some extent made with tight sides and bottoms, and there is more attention given to this matter each successive year.

The contents are generally removed during the winter months and used for fertilizer.

There is no contagious disease of animals reported, excepting hog cholera, which is not serious, only four or five cases. Farmers are keeping cleaner pens and giving more attention to the care of hogs, as they believe prevention is better than cure.

Slaughter-houses, two; which have been inspected and the owners notified to keep them in better sanitary condition, which has been partly complied with.

There have been no prevalent diseases this year, and think we can say that the past year has been remarkably healthy in this district. The health laws are being better understood, and, consequently, better appreciated and observed.

MONROE TOWNSHIP. - Report from L. M. Halsey, M.D.

The sanitary condition of Monroe township has been very much improved in the last two years. The people are taking more interest in it. The water-closets are very much better. In a great many cases they have boxes in which they use coal ashes and empty them frequently. Pig pens, which were a source of great
trouble to the community, have been almost entirely abolished within the town. Dysentery has not been so prevalent this year; not more than one-third of the cases that we had the two previous years. In the spring, we had an epidemic of measles; this fall, an epidemic of whooping-cough. Typhoid fever is making its annual visit, but not of a serious type. Some little pneumonia, but of a mild character. On the whole, the township is in a good condition.

South Harrison Twp. Report from S. F. Stanger, M.D., Sec'y.

The refuse is mostly fed to pigs and chickens, but in some cases thrown outside the kitchen door. We have some malarial fever during the spring and fall, but has not been so prevalent as during the past few years, accounted for, probably, to some extent, by the fact of the water in the mill-pond (which is situated in the village) not being so low as in former years.

Rheumatism has been more prevalent with us than for some time past. During November and December there was a general epidemic of influenza. In connection with it there was an unusual number of cases of rheumatism.

No contagious diseases among domestic animals, except in one herd of cattle which were afflicted with pleuro-pneumonia, but the disease did not extend.

Water-supply is derived from wells and cisterns. Well-water is very hard, and during the months of August and September it becomes very offensive and not fit for drinking.

The township is perfectly healthy at present; no ague prevails, or fevers, as is usual this time of year.

Hudson County.

Hudson County. - - Report from C. J. Rooney, Jr.

The diseases which, when compared with the average, show most plainly a decrease of mortality were diarrheal diseases and scarlet fever.

Local Boards of Health.

From scarlet fever the deaths were 91. In the previous eleven years the deaths were as follows: 245, 167, 170, 249, 163, 131, 232, 113, 213, 183, 114.

The marked decrease of the number of deaths from scarlet fever, below the average for so long a period, would suggest that a cause be sought for.

Coincident with this decrease was a new rule of this Board, a system of report, inspection of contagious disease and notification of school principals, which resulted in the exclusion from the schools, public and private of this county, of any child affected with any of certain communicable diseases, of which scarlet fever is one.

This rule has been carefully carried into effect, with the co-operation of the school principals, many of whom have expressed their gratification with the Board's efforts in the direction of affording protection to the school children and preventing the spread in the schools of contagious diseases.

It does not seem to be an unreasonable inference to assume that this new system of the Board is to be credited with the decrease of mortality from scarlet fever.

There have been no epidemics during the year.

There were two deaths from small-pox, one in November and one in December, 1885. Both cases originated from contact with persons who had just arrived on steamers from Europe.

By suggestion of this Board, the honorable the Board of Chosen Freeholders have arranged to so alter the small-pox hospital at Snake Hill that by means of additions it will be able to accommodate cases of contagious disease other than small-pox. This will enable this Board to provide for the cases of contagious disease requiring removal from home.

The Board has enforced the ordinances against certain physicians who had neglected to comply with the law as to vital statistics, and for the past few months the good effect of this action has shown itself in a much fuller return of births.

Public funerals in cases of contagious diseases have been prohibited by ordinance and due notice sent to undertakers.

The dairy stables of the county are visited frequently by Inspectors, and in most cases were found faults of construction, drainage and management. In all cases these faults have been corrected; in some cases not without suit. In one case a large dairy of the swill-milk class was driven out of the county.
Slaughter-houses, cow-stables and places in which are carried on noxious trades, are visited at least once a year. The result of this system is found in the greatly improved manner in which these places are conducted. Inspection by experts of all cattle in the county, with a view to discovering the facts as to the existence of pleuro-pneumonia and controlling its spread, engages the attention of the Board.

A large number of suits have been brought and carried on by the counsel, in all of which the Board has had decision in its favor. There is not nearly so great a tendency now to resist the enforcement of ordinances as formerly.

An immense amount of work in the shape of inspections has been done by the Inspectors in cases of contagious disease and of nuisances, and many nuisances of long standing, hitherto resisting all efforts of those residing in the vicinity, have been abated.

The citizens of some of the outlying towns have asked and received the aid of the Board and of its Inspectors and counsel in securing the removal, by their own local authorities, of certain unsanitary conditions.

The removal of night-soil seems to be as far from being done satisfactorily as ever. It would seem that another scow provided in the county would come near to practically solving the problem.

HUNTERDON COUNTY.

DELAWARE TOWNSHIP. - Report from A. W. MURHEID.

The health of the township has been good during the past year, no epidemic prevailing.

The water-supply is obtained from dug and driven wells and from springs.

The drainage is perfect for the reason that the dividing line between the waters of the Raritan and Delaware rivers passes through about the center of the township, the water of the former running east whilst that of the latter has a westerly course.

There is but one slaughter-house within the limits of the township and that is kept in a proper manner.

Only one complaint of nuisance has been reported to the Board this season, which they immediately investigated and notified the parties concerned, who abated it as soon as it was possible for it to be done.

LOCAL BOARDS OF HEALTH.

EAST AMWELL TOWNSHIP. - Report from P. C. YOUNG, M.D.

The health of the township for the past twelve months has been better than the preceding year; have had less zymotic diseases.

If at any time we should be visited with an epidemic, I shall gladly inform you of its nature, and conform to all the requirements of the laws.

KINGWOOD TOWNSHIP. - Report from Geo. E. DALRYMPLE, Sec'y.

The general health of the township has been good during the past year; no prevailing disease has occurred. Only one complaint has been before the Board as a nuisance, and that was soon removed.

LAMBERTVILLE. - Report from Geo. M. HOLCOMBE, JR.

Water supplied by a private company, and is soft. It sometimes has a bad odor in warm weather, but an analysis shows it to be pure. It is taken from Swan's creek, and no sewage enters into it above the point of supply. No examination made of the stream. People generally depend on cisterns and wells.

A yearly house-to-house inspection is made.

Cesspools are used, with open bottoms, and are cleaned by a person under charge of the Board, and the contents removed beyond the city limits. Excreta removed by the same person and disposed of in the same way.

Diphtheria was quite prevalent during the past year—about twenty-five cases and a few deaths.

The Board has been very active during the past year.

All hogs and pens have been removed from the city limits.

Houses and premises have been inspected very thoroughly, and found principally in good sanitary condition. In a few cases nuisances were found to exist, which have been abated.

LEBANON TOWNSHIP. - Report from A. S. BANGHART, Sec'y.

The past year has been healthy in our township; no epidemics have been with us this year. Our Health Board is active, obeys all summons and in all cases strive to do its duty, which has added greatly to the health of our township; vaccination is well attended to.
Raritan Township. - - Report from J. H. Ewing, M.D.

The water-supply is by private company; about one-third of the houses of Flemington take the water. The water is taken from the South branch of the Raritan river, and sometimes after a rain the water is discolored; the water is soft and has no bad taste. The reservoir and pipes are cleaned occasionally; no sewerage in stream nor other mode of pollution. Very few use wells, but a good many use cisterns. The people outside of the town use wells and springs for drinking and cooking, and cisterns for stock and washing purposes.

There are three drains, (terra cotta pipe, twelve to fifteen inches,) draining from five to ten houses each, and they have their outlet in the natural water-courses just at the edge of the town. The cellars are generally dry.

Very few cesspools (three or four); not cemented, open bottom and sides. The contents when emptied are used for manure.

The slaughter-houses are kept in a sanitary condition.

Tewksbury Township. - Report from O. A. Farley, Sec'y.

There has been no disease prevailing as an epidemic or endemic.

Malaria exists in some parts of the township, and there have been a few cases of typhoid fever, and these of a mild type.

Mercer County.

Chambersburg. - - Report from James H. Tindall.

We derive our water-supply from the city of Trenton water-works. About 1,500 consumers take the water. The water is somewhat discolored during freshets in the Delaware. The water-pipes are cleaned out by the chief of the fire department turning on the fire-plugs.

We have no tenement-houses. A house-to-house inspection has been made by the Health Inspector during the past summer.

In reference to cesspools, they are chiefly brick sides with open bottom. They are emptied by scavengers, at the expense of the owners of property. The contents are used as fertilizers.

The slaughter-houses in the borough are regularly inspected during the year by the full Board of Health, they going in a body to all such places about four times a year, and oftener if any complaint is made from the neighborhood where they are located.

Our manufactories are chiefly iron works. We have one soap manufactury, which causes some trouble to the Board at times, by the residents in the vicinity making complaints of the stench arising from the process of boiling the fatty substance, which at times is very offensive, and is, in the opinion of the Board, detrimental to the public health.

The public schools have been visited by a majority of the Board, who find that they are not satisfactorily ventilated, some of the heating apparatus not having cold-air conductors. The Board have made several complaints as to this matter to the school authorities, but nothing has been done to remedy the matter. The damp air of the cellars is sent up into the school-rooms, which makes the rooms smell musty and oppressive if you stay in them any length of time. Something should be done to remedy this matter, as the Board consider it detrimental to the health of the children. The State Deaf and Dumb Institute is in a very good sanitary condition. Every department is thoroughly ventilated, and the Board of Health spoke very highly of the general workings and health of the institute when they visited it a few weeks ago.

Hightstown. - Report from Thomas C. Pearce, Secretary.

The borough is about one mile in length from north to south, and about half a mile wide, with a pond on east border of the town. If we take the level at the aforesaid pond, Main street would average in the business portion two to eight feet high, while the northwestern would average from eighteen to twenty feet, so you see by this statement the business portion (the most important to health) is on very low ground and with no material sewerage. A small stream passes through the center of the town. Several privies are upon it, and it is also used to throw debris, &c., in.

The supply of water is generally obtained from wells, and in one case through pipes from a spring to a hotel.

Sewerage is mostly into pond and the aforesaid stream passing through the center of town. Peddie Institute has a drain pipe from main building leading to pond, and the shirt factory have something of the same sort.

Streets are now in very good condition. The council appoints a
committee to attend to the aforesaid. We have one public park, containing about four acres, which belongs to the Hightstown Land Improvement Association, but it is in very bad condition and is never used as a place to rusticate.

Two slaughter-houses are not in very good condition; one slaughter-house situated near a dwelling.

MILLHAM TOWNSHIP. - Report from James E. Clinton, Sec'y.

The water-supply is partly by the city of Trenton water-works and principally by wells. Nine-tenths depend on wells at present, but nearly one-half will be using the city water in another month. The well-water varies in taste, some is hard and irony, some is soft and some smells so badly that it can’t be used, and are constantly being filled up. Cisterns, we have none.

As to drainage, there is no system except in one case, and that is constructed with terra cotta pipe. It is the worst place in the township to be drained. The water-level is good, except in the instance above referred to, in the principal part of the township. We are surrounded with swamps, and malaria is quite prevalent in the spring and more particularly in the fall.

The out-houses are all built on the rear of the lots, which are principally 100 feet deep. They are dug to the depth of from 5 to 6 feet. None are cemented, for the ground is naturally sandy at the depth of 3 feet. They are emptied by night scavengers. We have more trouble with filthy out-houses than anything else, but they comply when we take them in hand.

PRINCETON. - Report from Jas. R. Drake, Sec'y.

As to sewers, we have no general system. The College of New Jersey has a private system of surface distribution for their sewage. Cellars are dry, with some exceptions, in parts of the town where the ground is almost level. There are no swamps very near, yet malaria is quite frequent.

Sewers are used only by the college for their buildings. Their pipes empty into distributing troughs on a lot on the borough line, the liquid matter is absorbed by the ground and sun and the thick matter is mixed with ashes and used as compost. Throughout the town cesspools, both cemented and open-bottomed, are used, and are cleaned, generally, by being pumped into air-tight barrels and carted away and disposed of to farmers for fertilizer. We have no perfectly odorless excavating apparatus at present, but expect to have in the near future.

Members of the Board are furnished with copies, and abstracts of them and circulars are often published and circulated throughout the town. Considerable difficulty is experienced in getting the people at large to believe in the virtue and the necessity of enforcing ordinances.

All legal and persuasive means are resorted to in resisting possible epidemics and the spread of contagious diseases.

TRENTON. - Report from William Cloke, Secretary.

The following annual report just made by Health Inspector McGuire, gives a pretty clear and comprehensive account of the operations of the Trenton Board of Health for the past year:

"The sanitary condition of the City Hall is very bad. The sewage from the whole building empties into a cesspool in the cellar, and the offensive odor arising from this source fills every office, so that at times it is almost impossible for officers to transact business. The janitor in charge of the building does all in his power to keep the place in proper condition, but as long as prisoners are kept in the building, with the cells located as they are at present, there can be no improvement.

"The public schools are in about the same condition as last year. The greatest source of complaint during the year has been the foul condition of the Assanpink creek; this has been especially so in the summer season. Citizens have complained that the stench arising from the creek has made living near it almost impossible, and the time is not far off when strong measures will have to be adopted to stop the increasing flow of filth into this stream.

"I have devoted considerable time during the year to house inspection, with the result of abating many nuisances, and making many improvements. In this connection I have found a great deal of defective plumbing, especially in soil-pipes leaking at the joints.

"The purity of the drinking-water supplied by the city is well known, and needs no comment from me.

"There are considerably less wells used now than last year; citizens who have been using well-water are having the city water put in, and no doubt at the end of the next year there will be but few wells used for drinking-water."
"I have given considerable attention to the milk-supply of our city, and I am glad to say that the quality of milk sold here cannot be surpassed in any city in the State.

"I have also given some attention to adulterated food, and have submitted various samples to the chemist for analysis, the results of which have been such as to convince me that more care should be given to the subject."

The Board's sphere of usefulness has recently been largely increased by the appointment of Mr. Charles Hewitt as analytical chemist. His labors have already resulted in exposing and preventing the continued use of some dangerous well-waters. The Board purposed making use of his services in various important directions.

I expected to be able in this annual report to announce the passage by common council of an ordinance to supply this city with sewers, but this much-needed public improvement was defeated by a close vote in council, and is again indefinitely delayed. It is hoped that a modified plan will soon be introduced and promptly passed, which will meet the necessities of the central and thickly-populated parts of the city.

WEST WINDSOR. - Report from JOHN C. YARD.

We have no towns in our township, and but few villages, and they are small, and our water-supply is from wells, springs and cisterns. Our township is mostly well drained, and but few boggy or marshy places. We have no slaughter-houses or any places of a foul nature. Our refuse is generally carted out and put on the land.

No contagious disease this year. Some malaria in township. Some sickness in cattle, but no epidemic. The cattle that were sick have been carefully looked after.

Our people are learning to look after the health of their children and teaching them to look after their health.

MIDDLESEX COUNTY.

EAST BRUNSWICK TOWNSHIP. - Report from W. H. THOBURN.

We had but one meeting of the Board, which was held at Milltown, on account of an epidemic of typhoid fever, and notified the people of that section to clean and disinfect their water-closets. This is all I know of to report; should there be anything further, I will give you more particulars.

NORTH BRUNSWICK TOWNSHIP. - Report from J. A. WINES.

Pneumonia and typhoid fever somewhat more prevalent than in former years, with perhaps the exception of last year.

PERTH AMBOY. - Report from E. B. P. KELLEY, M.D.

The city water-supply, furnished by a private company, is supplied by springs and surface-water. Owing to scarcity of water the past season, the main dam has been raised four feet, with view to greater capacity. The water being highly discolored, many families object seriously to using it for drinking purposes. This water is used freely during the warm season for flushing the sewers.

Two new brick sewers have been built in the past year. Several large ponds of a dangerous character have been drained and filled, which has added materially to the health of that part of the city.

The streets and public grounds have been kept in better condition the past year than heretofore.

Refuse and excreta are carefully moved beyond the city limits.

Public health has been very good, no epidemic diseases during the past year.

Vessels entering this port are rigidly inspected at the quarantine station.

SOUTH BRUNSWICK TWP. Report from CHARLES L. STOUT, Sec'y.

The general health of the township for the past year has been excellent. No epidemics have prevailed, and no complaints have been made to the Board. More attention is being paid to sanitary laws than formerly.

WOODBRIDGE TOWNSHIP. - Report from JONAS H. CODDINGTON.

Meetings of the Board have been held every two weeks during the summer months.
LOCAL BOARDS OF HEALTH.

MONMOUTH COUNTY.

Asbury Park. - - - Report from Randolph Ross.

During the past year the construction of the water-works has been completed. A water-tower, 125 feet high and 12 feet in diameter, with a capacity of 100,000 gallons, has been added to the works. One hundred and sixty-five connections have been made to the water-mains and new connections are being made daily.

The Board of Health has continued to cause examinations to be made of the water of suspected wells, and all wells found to be polluted are promptly closed. Fourteen analyses of water have been made and eight wells have been closed.

The sewers have worked admirably during the past summer, and there have been no complaints of odors from the outlet. During the past year, October 15th, 1885, to October 15th, 1886, we have sent 225 notices directing attention to unsanitary conditions. There have been 1,625 inspections and re-inspections of buildings and premises.

Eight cases of reported contagious diseases have been investigated.

Twelve children have been excluded from school on account of contagious diseases.

Twenty-two samples of kerosene oil have been examined and all found to be up to the standard fixed by law.

Since the organization of the Board, suits have been ordered in eighty-seven cases; thirty-three of these cases have been brought to trial; twenty-nine convictions have resulted.

Gas and the electric light have to a considerable extent superseded kerosene as a means of lighting streets and dwellings.

A marked improvement is being made in the character and condition of the roadways and sidewalks of the public streets in the borough.

This work is being accomplished by the execution of the borough ordinances by the Board of Commissioners.

A very general tendency exists toward the ornamentation and adornment of private grounds, door-yards, &c., and we fancy that in this fact there is evidence that the neatness and cleanliness heretofore required by this Board is bearing fruit, and trust that the taste and inclinations of residents are to supplement the sub-surface improvement and renovation which has been going on in this borough for the past six years. In accordance with an ordinance passed by the Borough Commissioners about one year ago, all new buildings erected within the limits of Mattison, Railroad and Lake avenues and Emory street are being built of brick.

From a sanitary point of view this fact is fortunate, for we find that property owners are more willing to put first-class drainage works in and about valuable brick structures than they are where the building is a cheap wooden affair.

The public school building has been enlarged during the past summer by the addition of two wings, each 22x29, and its lighting, drainage and water-supply are satisfactory, the latter being from the city works. The heating of this building is by hot-air furnaces, and provision has been made for ventilation.

Freehold. - - - Report from W. J. McClure, Sec'y.

This Board has resorted to precautionary measures rather than to the enforcement of ordinances, and finds that an occasional reminder accomplishes the desired end.

Our town has continued to be healthy, and with no epidemic diseases.

The only death from typhoid fever was traced to using impure well-water. To settle this question effectually, a small quantity of the water was analyzed and pronounced bad and unfit for potable use, being polluted with surface drainage and percolations from a near-by privy. Notice to the occupants of the premises to discontinue the use of the water has been followed with good results, and it has been used since only for cleansing purposes.

We are of the opinion that other wells are in a similar condition, but unless urgent measures require an inspection they do not come to our knowledge.

Complaints are occasionally made of unpleasant odors from fat rendering at the slaughter-house, and from hog pens and emptying of cesspools. These and others nuisances are disposed of without the enforcement of the penalty, and the Board feels that some good has
resulted from the efforts of the past year, and that our town compares favorably with others of its size in its sanitary condition, being without sewerage or a water-supply other than that obtained from wells or cisterns.

The attention of physicians having been called to the law in relation to vital statistics, the result has been a more complete return of births and deaths to this Board.

Freehold Township. Report from O. R. Freeman, M.D., Sec'y.

The past year, outside of the incorporated limits of the town, has been one of very general good health, no epidemics of any contagious diseases have prevailed in any part of the township. There have been less cases of fever of any form, either of malarial or of a typhoid type, than in former years. There has been no complaints to the Board of Health, as in past years, from the improper storing or use of manufactured manures, so as to be dangerous to the public health.

About the middle of September a drove of some forty head of cattle arrived in the township, and were distributed on six different farms, in an apparently healthy condition. In about two weeks after their arrival sickness was discovered among them in several herds, and in less than one week from the discovery of any disease there were seven deaths in four different herds. An examination, by order of the State Board of Health, showed the disease to be Texas cattle disease, or splenic fever. The contagion had been communicated to them before their arrival here. After a thorough examination of their symptoms, and the application of remedies indicated by those symptoms, and a thorough quarantine, the disease was at once checked without further loss or communication to other herds of cattle.

Matawan. - Report from Benjamin Griggs, Sec'y.

In the upper part of our borough and adjacent vicinity during the spring and summer we had quite an epidemic of dysentery, which in most cases yielded to prompt medical treatment. In most of those cases that proved fatal there was a complication of other diseases and infirmities. There has been no cases for some time past.

Our Health Inspector, Mr. P. C. Dishrow, reports the sanitary condition of our place as remarkably good at present. Some few cases of complaint during the summer of pig pens, etc., were promptly abated on notice to that effect by the Inspector.

Middletown Township. - Report from R. S. Snyder, Sec'y.

Naturally the drainage is good, requiring very little help, except where there are summer boarding places and hotels. Much attention, you know, has been given to drainage at the seaside with very beneficial results.

At those resorts the local Board have kept close watch and prevented any danger.

The roads have been the subject of much remark on account of the general improvement. They have been made as good as park drives in many road districts. The hilly portion is difficult to maintain when the floods of rain come.

Refuse, as a rule, is either made into compost at a safe distance, or burned or buried or placed below low water at sea. The excreta is used by farmers as fast as vaults require emptying, or buried in some localities to prevent any unwholesome smells.

Returns are generally made, but in a township having villages, containing churches and undertaking establishments, and where doctors reside, the returns are mostly carried to the assessor of the township in which the village or town is located, so that the rural township cannot or rather does not get the returns for his township, and therefore such townships are short of their true returns, and the other township containing the villages have more than belongs to them. There should be a law enforced requiring all returns sent to the proper officer of the township where they belong.

A family afflicted with small-pox was at once quarantined by us, and although the house was within a few feet of houses on each side, and in the midst of a large number of houses, it was confined to the family where it broke out.

The cause of the disease was obtaining bedding from the shore, evidently from a vessel having the disease on board. The whole village was vaccinated by two doctors, and every precaution taken to prevent the spread of the disease.

The expenses were paid by the township and amounted to no considerable sum.

Ocean Grove. - Report from A. E. Ballard, Sec'y.

The carrying away the contents of unconnected privies and cesspools to a distance of two miles and burying them is beginning to be attended
with so much cost and offensiveness to property owners as to induce more rapidly the construction of sewers and their connection. The difficulties and cost increase so rapidly that the Association believes that a voluntary settlement of this question, by which every property will be connected with the sewer, will result at no very distant date.

The garbage question is manageable now, but presents for the future a case of difficulty. It is now taken away every day at a cost of about fifteen hundred dollars for the season, partly fed to animals by the contractor and partly buried. The amount is largely on the increase, and the occupancy of the adjoining property is becoming more extensive. The needs of health will probably prevent the present mode of disposing of it, and the Association is carefully considering all the various methods proposed by hygiene as to what will be the best when the present system is compelled to change.

There was a full inspection by the Board of Health of all the properties in the Grove before the opening of the season. Wherever sanitary needs were discovered they were met at once without delay, where the owners could not immediately be reached. The Board was careful to record all the reasons which made the necessities, and have the gratification of reporting that in no case has there been any difficulty in the settlement of the bills. A general inspection is continued through the summer, and the Board believes that no serious case has escaped their attention. All classes of employees, i.e. men, garbagemen, tenants, policemen and people generally, are expected to report to the Inspector anything they either see or suspect. Large numbers of these reports are baseless, but in many cases they are valuable in reaching sanitary violations which otherwise might elude discovery.

There has been no special epidemic, and only one case reported of contagion. The case was light and yielded easily to medical treatment. There were two or three cases of light fever which the parties attributed to the property surroundings, but the physicians did not so report them.

The sewer extension, which at a very heavy cost was carried out for a distance of 500 feet into the ocean, and of whose permanency as well as competency to do the work required of it there were grave doubts, has demonstrated a complete success. The discouragements incident to the experimentation—when the whole structure, costing between four and five thousand dollars, was rendered useless by the torpedo worm, and which required a much higher outlay to replace it with iron piling driven in accordance with the latest and best inventions of modern science, and galvanized iron piping through which to discharge the sewage—these discouragements have been overcome by the new structure, which, during the time of its operation, has not manifested any symptoms of giving way, either to the violence of storms or the pressure of floating masses of wreck. No difficulty has been experienced in the sewage discharge. The highest tide of the year only held it back a single block for a couple of hours without any overflow of which we could learn, and which did not cause any disagreeable or offensive effluvia. No offensive odor is perceptible in the sea at the point where it is entered by the sewage, and the slight discoloration extends but from three to five feet. There has only been one instance where the connecting pipes have been choked, which was among the tents, and which resulted from an imperfection in the construction. A few cases have occurred where the pipes from dwellings have been stopped by carelessness, but there has been no difficulty in their speedy relief. There has been an extension of the main sewers. The number of new connections is 96, making in all ten and three-quarters (10 3/4) miles of main pipe and 415 connections.

It was intended to do more in this department the present year, but the great destruction to the sea-front occurring from the winter storms so absorbed both energies and opportunity as to lessen the attention to every other enterprise. The coming autumn and spring, it is hoped, will witness a large advance in this direction. The Association reports its appreciation of the interest and advice of the State Board, which has been freely given them in all stages through which their plans have advanced to the present gratifying success.

The question of water-supply, which was supposed to be fully solved by the artesian system of wells, developed unexpected embarrassments. The first well, whose experimentation cost between three and four thousand dollars and flowed 50 gallons per minute, was reduced nearly one-half by the establishment of another well by the Asbury Park authorities in immediate contiguity. This, however, was recovered by placing a small caloric engine with pumping arrangements. Two artesian wells had also been sunk by the Association in Broadway, which each gave a natural average flow of 30 gallons per minute. These were connected with the other and led into the general reservoir. But the pressure of the reservoir was so strong as to overpower the latter two and they drew water from it instead of adding to it. Another
well has since been sunk in a locality adjoining the first and connected with it, and a new and superior pumping engine established there, which now gives a regular supply of 140 gallons each minute, and is ample for all the present needs of the Association, both for fire and general use, with plenty for free flushing of all the sewer connections.

The number of connections with the water system during the year has been 54, which added to the 114 last year make a total of 168, with a number of orders for connections now on hand. The water and sewer systems are working together in such a way as to continually improve the sanitary condition of the Grove.

There are four and three-fourths (4½) miles of water-pipe now laid. The “lakes” have been kept in a condition which has apparently been conducive to general health. The constant outflow of their surface-water into the sea seems to fairly meet the health conditions.

The flow of an artesian well into Wesley lake, though not large yet, exercises a perceptible effect, while the fact that Fletcher lake is principally fed from springs at the bottom makes its waters generally pure. The upper end of the lake near the turnpike is not sufficiently deep to flow away rapidly, and for a block will probably be filled up and parked, or else put in shape for other purposes.

Shrewsbury Township. Report from John S. Throckmorton.

In the town of Red Bank there are public water-works owned by the town. Enough of the inhabitants now take it to pay running expenses and interest on the bonds. The water is excellent the whole year. Pipes are cleaned often by leaving open the hydrants for one day.

No drainage, except the natural fall, except a small brook in town used for all purposes, which is now receiving the attention of the Town Commissioners. Cellars are all dry with the exception of two that I know of.

Sewer is of brick; fall of at least five feet to the hundred, and empties in the river below low-water, and is about one-eighth of a mile in length.

As yet there has been no house-to-house inspection.

Thirteen houses connect with the sewer, the rest use cesspools; not many cemented; emptied by force-pump into tight barrels and carted on the farms.

The township and town Boards have served notices in every case where a nuisance has been found, and in every instance, with one exception, the notices have been complied with without trouble.

Typhoid fever has been, for two years, prevalent in Imlaystown, during late summer and fall; this year there was a larger number of cases than last and of a severer type. It is narrowly confined to a portion of the town where the wells are shallow and, to even a superficial inspection, necessarily contaminated with animal refuse, slops, &c. An examination of the water of two of the wells, ordered by the State Board of Health, and made by Prof. Cornwall, shows their use to be dangerous. In view of these facts we have ordered the wells closed and cisterns substituted.

Whooping-cough was prevalent during the spring.

A number of nuisances have been abated, generally with cheerfulness.

A township code has been gotten into legal form, and been given wide distribution, so that now the Board feels better prepared to carry on the sanitary work entrusted to them, in which all take much interest.

Morris County.

Hanover Township. - - Report from G. A. Becker, M.D.

There has been some hog cholera but it was confined to the place where it originated. The owner of this place lost about one hundred hogs. There has been no other contagious disease among animals.

There are two slaughter-houses in the township. Complaint was handed to our Board concerning one of them, and, upon investigation by the Board and health physician it was declared a nuisance and the owner ordered to remove it. He finally closed the place.

Prevailing disease has been of malarial origin, although it has been much less prevalent than last year. There has been much less sickness of any kind this year than last.
MORRISTOWN. - - Report from James Douglas, M.D.

Aqueduct water. The aqueduct supply is by a private company; is mountain spring water; is pure and soft. The reservoirs and pipes cleaned whenever needed; it is impossible for the water to be contaminated by sewage. A few houses are supplied with cisterns and wells.

We have three houses with six or eight families and quite a number with two to four families.

During the past year there have been ten cases of scarlatina of a mild type and a few cases of whooping-cough. Mumps have been quite prevalent throughout the town, in a very few instances among adults, otherwise the health of the town has been remarkably good.

The Inspector reports that upon a thorough examination he finds that the rules and regulations of the Board of Health have been complied with.

ROCKAWAY TOWNSHIP. - Report from William P. Bryan.

There have been quite a number of cases of chills and malaria. We have attributed it to the present dry fall and the low water in the Rockaway river and its tributaries. We have thought that it would be advisable to request the Direct Process Iron and Steel Company to draw and dredge their pond, it being filled with debris. In times of low water like the present it breeds malaria and kindred diseases. This will be done. There have been some few cases of unhealthy or not properly-kept cellars and out-houses that have been promptly attended to upon request.

WASHINGTON TOWNSHIP. - Report from Silas W. Hance.

There is no examination made of drinking-water; probably one-fourth depend on wells. I do not think there are any that depend entirely on cisterns. A great deal of the water is quite bad just now, owing to the extreme lowness of the water.

Twenty-eight houses have more than one family; perhaps six have more than two. Houses do not generally have cellars. There is no yearly house inspection, no Inspector.

DOVER TOWNSHIP. - - Report from E. H. Wilkes.

We are happy, in offering to you our report from the township of Dover, to say that if the entire State were as healthful as our township, a State Board of Health would be almost useless. So remarkably good hath been the health of our people this year that our physicians have been comparatively idle. It is their universal testimony that there has not been one-half the sickness this year that we commonly have. With an elevation of from twenty to sixty feet above the level of the river and no swamps partially overflowed around us, we are free from all malarial troubles. Our streets are kept clean, the drainage
good, and the very best of water, so that all these tend to secure health and happiness for our people.

Island Heights is getting to be quite a summer resort for invalids, and so remarkably healthful is the climate and so perfect are the sanitary arrangements that all who come to it for comfort declare themselves greatly benefited thereby. In fact, our entire township is free from all contagious diseases. No malaria, no chills and fever.

There is one suggestion that we would make to your honorable body, and that is with reference to our public schools. We think there should be a greater uniformity in the construction of our school-houses—a more perfect system in the sanitary arrangements of our school-houses, and an entire change in the plans of ventilation. To accomplish this it would be well to have each school-house inspected at least once a year by a competent expert.

MANCHESTER TOWNSHIP. - Report from J. R. STEELMAN.

The land needs but little drainage; there are no places of any size to require sewerage.

Manchester, our largest place, has only about 900 inhabitants.

All the houses are in a comfortable condition, and are perhaps as healthfully arranged as any others of the same class.

The railroad repairing shops for New Jersey Southern Railroad, located at Manchester, and jute bagging factory, located at Manchester, are all the manufactories in the township.

Most of the children have been vaccinated, but there are no arrangements made to isolate cases of a contagious character.

There have been no contagious diseases until within a few weeks past; some cases of diphtheria have occurred in Manchester.

This being in the pine belt of New Jersey, and but sparsely settled, is noted as being a very healthy locality.

PASSAIC COUNTY.

ACQUACKANONK TOWNSHIP. - Report from JOHN H. MERSELIS.

Generally cellars are used for storage of vegetables during winter. Very few tenement-houses—number not known. There is no yearly house-to-house inspection.

LOCAL BOARDS OF HEALTH.

Cesspools are constructed in all the various ways known to those who generally use them. emptied by pumps, buckets, &c. Contents removed and used for manure.

MANCHESTER TOWNSHIP. - Report from WM. D. BERDAN.

No sewers in Manchester. Cesspools are in all imaginable forms; some are built with cemented sides and bottoms and covered, with pump for pumping out contents. Some have open bottoms, some are merely a depression in the ground where slops and refuse collect, and occasionally the accumulations are carted away and used as fertilizers.

There have been about twelve cases of spinal meningitis among horses, with seven deaths. No other disease to report.

PASSAIC. - - - Report from JOHN B. PUDNEY, Sec'y.

Many of the cheaper houses are occupied by more than one family, particularly in the manufacturing district known as Dundee.

Public health has been very good. City has been generally healthy and laws regulating same enforced. All nuisances are promptly abated.

In case of appearance of small-pox, those attending public schools are required to be vaccinated.

PATERSON. - - Report from WILLIAM K. NEWTON, M.D.

The public water-supply has been satisfactory, as usual. Many public wells have been closed, but a great many persons still use water from wells situated in back yards, and all of which are more or less contaminated.

Seven cases of typhoid fever were traced to one well, which is now closed; four of the cases died.

About one and one-half miles of new sewers have been laid during the past year. Sewer connections are ordered immediately by this Board, and now very few houses fronting on sewered streets are unconnected.
SALEM COUNTY.

LOWER ALLOWAYS CREEK. - *Report from W. Scott Smith, M.D.*

The supply of water is obtained from wells and cisterns. The water in the wells is used for drinking, that in the cisterns for washing clothes, dishes, etc.

The land is drained by means of ditches, which carry off the water in time of heavy rains to the creeks, mill-ponds, etc. The cellars are dry, except in very wet times. Malaria is not very frequent.

Houses all have cellars; but vegetables in the raw state are not stored therein. There are not more than five or six houses in the township occupied by more than one family; there is but one with more than two. The houses are observed by the assessor when assessing, and also attention given to nuisances.

There have been no prevalent diseases during the past year. The assessor has inquired concerning the losses of animals, and about contagious diseases. The loss of animals is small. The only contagious disease is the hog cholera, which at the present time has entirely disappeared.

MANNINGTON TOWNSHIP. *Report from David F. Grier, Sec'y.*

Malaria prevails to no great extent in the township, though occasionally cases come under our notice.

As to contagious diseases, we had, in the months of January and February of 1886, pleuro-pneumonia in the herd of John Dawson. The State Board took care of the cases.

We have had a renewal of the swine plague in our township to an alarming extent this fall, mostly in the northern portion of the township, commencing where it left off last year. Where it raged last year the hogs that passed through the disease do not have it this year. I do not know of a case of them having it. It is among this year’s swine in those places.

PILESGROVE TOWNSHIP. *- - Report from H. Crispin.*

No known prevalent diseases, and no contagious diseases, except a few cases of hog cholera and two cases of pleuro-pneumonia.

We have two canning factories. Complaint has been made to the Board about their emptying their refuse matter into the creek. This matter we must give attention to next year, as one farmer claims he has lost stock on account of their drinking the stagnant water. We shall need assistance from the State Board to have this nuisance discontinued. Hundreds of fish die from effects of the acid from the tomatoes.

SALEM. *- - Report from Josiah Wistar, Sec'y.*

To the State Board of Health, Trenton, N. J.:

GENTLEMEN—In presenting this our report for the year ending October 1st, 1886, we are gratified at being able to state that the general health of our city has been good during the past year, we not having had any epidemics or contagious diseases to contend with.

The law allowing all cities of two thousand inhabitants and over to have a Health Inspector has been a great benefit to us, both by saving the individual members of the Board a vast amount of labor, and by affording the means for a thorough inspection of the premises of all our citizens at least once in each year, and it has resulted in greatly improving the sanitary condition of our city—the house-to-house inspection made during last summer showing a very marked improvement in the condition of cellars, back yards, out-houses, &c., from what was observed the previous year. The houses in our city are, to a large extent, occupied by the owners, they generally having cellars, but these are rarely devoted to living or eating-rooms; only one family generally occupying one house.

As mentioned in a former report, the public water-supply is from Laurel run, which was dammed for the purpose of forming a pond, the water from which is conveyed to the city in cast-iron pipes a distance of three and a half or four miles, the works being owned by the city. The quality of the water when it reaches the consumer has never been satisfactory, being much discolored from lying in a pond, the bottom of which is of peat or mud; the taste being also somewhat affected by it. In order to remedy this evil to some extent, during the year 1885 a large well, some twenty feet in diameter, was sunk so near the pond that the water from it could be conveyed to the same pipes, and to a depth that it was thought would insure a good quality of water, the upper or surface springs being prevented from flowing into it by a water-tight wall. The water from this well, though clear as crystal, and of pleasant taste, is unfortunately
required to prevent a violation of its provisions. They are emptied at night by persons having carts or wagons constructed for the purpose.

The slaughter-houses which have been alluded to in former reports as being a source of much trouble to us, have been finally removed to a greater distance from the built-up portion of the city, though still within the city limits, but they are so kept as to cause no annoyance to those living nearest to them. Our efforts to exclude them from our limits proved ineffectual, the Boards of Health of the adjoining townships interposing objections to their being placed within their jurisdiction; and, upon further considering the subject, it was thought better to retain them where we could exercise control over them, and see that they were properly kept, rather than to thrust them out where they might be placed near the confines of the city, and prove more of an annoyance than they had formerly been.

During the autumn and winter of 1885 a large proportion of the hogs kept in this city, as well as those in the surrounding country, were affected with what was called "Hog Cholera," for which there seemed to be no effectual remedy found, and many of them died. As a consequence, fewer hogs have been kept within our limits than formerly, which is quite a relief. It seems hard to deprive a poor man from keeping his hog, which he considers a source of profit, but it requires much care that they do not annoy those living near. The number of persons who lost hogs or other animals by disease cannot be ascertained, no inquiry having been made to that end. Neither is there a register of persons who keep horses, cows, pigs, &c.

Our manufactoryes are in much the same condition as at our last report. The four canning factories, as well as other factories, are well conducted, and cause no interference with the public health or comfort.

The necessity for a public cemetery has long been felt, as many of those connected with or belonging to the different churches were rapidly filling up; and during the past winter a company was formed by some of our public-spirited citizens, and a lot of sixteen acres secured in a convenient location, which has been properly laid out for a cemetery, and several interments have already been made therein. During the extremely wet weather of last spring it was very difficult to dig graves in some of the older burial grounds to the proper depth without being troubled with water. This subject claimed our atten-
tion, and we were compelled, in one instance, to notify the trustees of the property to re-inter the body, which was done.

The act of April 3d, 1888, by virtue of which local Boards of Health can have funds at their own disposal to defray necessary expenses, we feel to be a great aid in carrying on our work, as we were formerly much hampered in that direction, and were unable to accomplish certain sanitary measures which we felt to be desirable and expedient.

The longer we are engaged in the interesting work of caring for the public health, the more we are convinced of its importance, and the pressing need there is that the individual members of local Boards of Health should feel a deep interest in the subject, and be willing to put shoulder to shoulder to push forward the good work. While we feel we have accomplished some good results since our inauguration, four years ago, we are conscious there is much more to be done, not the least of which is to endeavor to form and stimulate public sentiment in the direction of wholesome sanitary regulations.

SOMERSET COUNTY.

BEDMINSTER TOWNSHIP. Report from William P. Sutphen, Sec'y.

One or two instances of scarlet fever were confined to the houses of their first appearance by proper quarantine regulations of the Board. Due attention has been paid to the proper avoidance of pollution to the streams of the township, which the great drought of the fall made necessary. In one or two instances the Board had to act with firmness, and they are happy to say effectively.

Bridgewater Township. - Report from Joseph B. Smith.

There is no system of drainage, only private drains; most of the cellars are dry; no swamps, and very little malaria.

Houses generally have basements or cellars. In the towns, the basements are occupied, and some in the country are used for the storage of vegetables. About forty tenement-houses of more than two families.

There are a number of private drains. About one-half the houses connect with them. Some cesspools are cemented and others are built

with open bottom or sides. They are emptied by wagons, and the contents are taken and mixed with dry earth and used as fertilizers.

Assessor inquires each year as to losses of animals and as to contagious diseases.

There were a few cases of diphtheria in the town of Raritan.

HILLSBOROUGH TOWNSHIP. - Report from Wesley H. Horner.

We have no public health laws additional to the State laws. There is a disposition to pay more attention to hygienic matters, and the people are easily recommended to a proper course.

Due attention is given to registration and vital statistics.

Quarantine we practically know little about. Vaccination may be said to be in the hands of the physician. It is very generally attended to.

Ulcereated quinsy was very common during the winter. Also quite a number of cases of pneumonia and a few of rheumatism. Malaria has nearly disappeared.

I might have mentioned the occurrence of glanders among the horses of Jos. H. Van Cleef. The efforts of the State Board to limit the disease were successful.

MONTGOMERY TOWNSHIP. - Report from William Oppie, Sec'y.

The Board of Health have nothing in particular to report this year. Having been to every house in the township this summer, I would say I am very much pleased to find everything in such good condition.

No contagious diseases have prevailed with us during the year. The death-rate has been the smallest in many years, according to our township record that has been kept for a long time.

NORTH PLAINFIELD TWP. - Report from Isaac Brokaw, Sec'y.

Abundant supply of as pure water as can be found in any section of the State; procured wholly by driven or drilled wells at an average depth of thirty feet; a natural surface drainage.

Streets and public grounds are kept in excellent condition; streets lighted by private property-owners and soon will be by electricity.

Refuse and excreta are attended to by each household, carted away
and manufactured into fertilizers; public health exceptionally good, as
the death-rate will show about 14 per 1,000. There have been no
epidemic diseases during the past year. Two cases of scarlet fever
during May last only, which were thoroughly quarantined and left
no trace, and neither of them was fatal. We had one case of typhoid,
which recovered. North Plainfield has formed a borough Board.

No complaints to the Board of Health to warrant harsh treatment,
but all demands to abate trivial nuisances cheerfully complied with.

SUSSEX COUNTY.

MONTAGUE TOWNSHIP. - Report from Britton A. Westbrook.

Our water-courses here are almost as nature formed them, except—I
will note one single exception that has fallen under my observation.
Since our State has appointed Fish Commissioners, and our newspapers
have published accounts of the advantages to be derived from the pos-
session of private preserves for the propagation of "food fishes,"
several of our townspeople have thrown dams across small running
streams, or across the outlets of swamps, and have thus formed rude
ponds, and within the waters so created have placed some of the
coarser species of fish. Now, though the possession of such places
may be very gratifying to the owners, yet the whole surrounding
neighborhood has been subjected to a perfect inundation from myriads
of mosquitoes, where such pests were formerly unknown, and in every
instance followed by an outbreak of fever and ague, something that I
had never known before, although I have lived for over fifty years in
this township. Of course such a state of things could have but one
result, a general lowering of the average health-rate of the township,
with no corresponding benefit resulting in favor of any class or pro-
fession, except, perhaps, the doctors.

NEWTON. - Report from George Hardin.

Water is principally from wells, and filtered cisterns used; well-
water is hard. Drainage and sewerage very poor. Streets and public
grounds clean. Houses comparatively dry and clean. Refuse and
excreta carted out of town. Cattle free from disease. No complaint
of nuisance. No appropriation for sanitary expenses. Most preva-

LOCAL BOARDS OF HEALTH.

SPARTA TOWNSHIP. - - Report from Jacob Timbrel.

There has been no disease prevailing as an epidemic during the
past year.

The Board of Health has had but two complaints for the last year
of nuisances, which, on notice, were immediately abated.

Our school-houses are as good as any in this part of the State, but
I think their ventilation might be improved.

There has been no disease prevailing among cattle in our township
for the past year.

Our slaughter-houses, of which we have four, have been kept in a
clean condition, so as not to be a nuisance detrimental to health.

I am sorry to say that the returns of vital statistics, especially of
births, have not been as well attended to as should be.

STILLWATER TOWNSHIP. - Report from C. V. Moore, M.D.

The assessor reports to me that he has diligently inquired as to cases
of diseases in animals during the past year, but has no cases to report.

No complaints have been made to the Board of Health of this town-
ship for the past year. It has been a year of unusual health. Much
less malaria than usual.

VERNON TOWNSHIP. - Report from H. H. De Kay.

The health in this township has been unusually good the last year;
the death-rate has been very small. No malignant or contagious
diseases, and less malaria than there has been in ten years. No com-
plaints have been made to the Board of Health.

WANTAGE TOWNSHIP. - Report from Newman Hall.

The Wallkill low-lands are partly embraced in this township. They
are dry, except in winter and spring. Malaria has been prevalent in
former years, but this year I have heard of no cases.
UNION COUNTY.

There have been some cases of malarial fever, with a decrease in numbers since last year.

The sanitary condition of our city is good, with the exception of the system of emptying some of our sewers in the Elizabeth river, there being a very small amount of water, not sufficient to carry off the sewage as it should be. It will be readily seen that the deposit of animal and vegetable matter, the refuse of a considerable portion of the city, must contain elements deleterious to health. When, therefore, this stream is very much reduced by drought and exposure to the sun, with its bottom covered with filth and decaying matters, there necessarily obtains an unwholesome state of air about it. We look for some relief in this matter another year, either by placing a lock at the mouth of the river or by turning the sewers some other way.

FANWOOD TOWNSHIP. Report from F. W. Westcott, M.D., Sec'y.

We have had very little sickness in the township the past year; especially marked has been the decline in malaria and the usual bowel troubles during summer and fall months. There have been a number of cases of tonsilitis of a light form. No diphtheria, and a very few cases of light scarlet fever.

We find the people very willing to comply with the health laws, and the officers of the health are respected and looked upon for public safety, as they should be. Very seldom has the Board been called upon this year. In one case of an improperly-kept dairy, we found milk had been taken to consumers in very dirty cans, poorly washed with impure water. This was promptly checked by the Board and has not since occurred. Taking things in all we have truly had a very healthy and quiet year.

Perhaps I should mention the case of a farmer losing about seventy-five hogs from cholera. The trouble did not spread from the farm. This occurred during the summer. At present we have no knowledge of any trouble with cattle.

LOCAL BOARDS OF HEALTH.

NEW PROVIDENCE TWP. — Report from A. M. Cory, M.D., Sec'y.

The most noticeable fact in sanitary matters was the obliteration of a very malignant type of scarlet fever, which became centrally located among us during the summer, and was probably brought from a neighboring city. Five cases occurred, two of which were fatal. The annihilation of the disease, confined to two families, was effected by the prompt and decisive action of the Health Board and the unremitting vigilance and diligence of the Inspector in quarantining and freely using disinfectants. Disinfectants were used in the homes of the neighboring families by themselves. Attention was given to the destruction of books and papers exposed in the sick room, as they are believed to frequently be vehicles of contagion.

Without explanation or comment, we assert that one of the most necessary and practicable improvements to be made in rural as well as municipal districts, is the deepening of wells to secure a plentiful supply of good water, and prevent the evils consequent upon the exhaustion in ordinary periods of drought.

SUMMIT. — — — Report from W. H. Risk, M.D.

Summit is located, as its name indicates, on the top of the Orange mountains. Has a population of about 2,800. The climate is noted for its dryness and equability, and is, consequently, highly beneficial to those suffering from pulmonary troubles. Water is obtained from wells, and as a rule is of exceptional purity. Closed and cemented cesspools, well ventilated, are in general use.

The refuse and excreta are taken care of by odorless sanitary carts licensed for that purpose.

There are no cemeteries within the township. There have been no prevalent diseases during the past year.

PLAINFIELD. — — Report from William C. Boone, M.D.

The current year has been marked by special epidemic influences, fortunately of a mild type, and the city has suffered from the prevalence of certain maladies which should never have occurred.

In the southwestern portion of the city the sewerage is of such a defective character that it may well be questioned whether it is not a source of disease rather than a sanitary safeguard.
In many instances the inhabitants of this section empty their slop-water into the gutters and dispose of their excreta in badly-constructed privies, the contents of which percolate through the soil and pollute the surrounding wells.

And in this particular section have occurred, during the last six months, a large number of cases of scarlet fever, of a mild type, fortunately, in nearly all instances.

At the present writing three or four cases of diphtheria of a mild form have been reported.

A mild epidemic of mumps and whooping-cough prevailed in the earlier months of the year. During the summer we had comparatively few cases of cholera infantum. What few there were, with one or two exceptions, terminated in recovery. In these fatal cases, convulsions occurred. Ordinary diarrhoeas were frequently met with, and offered but little resistance to the ordinary methods of treatment.

No well-pronounced cases of dysentery occurred—a marked contrast to the prevalence last year of this formidable disease.

Fever of a malarial character has prevailed to a mild degree, and is generally controlled by a few doses of bark or some one of its alkaloids. No typhoid fever has been noticed this season.

Our public schools are generally well ventilated and properly constructed, but in their present overcrowded condition are the agents for spreading the communicable diseases of childhood, and should have more stringent regulations regarding the admission of children coming from infected households.

INSPECTOR'S REPORT.

The city of Plainfield is situated in the eastern, middle portion of the State, about twenty-seven miles in a southwesterly direction from Jersey City. It has a population of about ten thousand. There are about three thousand acres of surface within the city limits. The climate is mild and genial, being agreeable and relieving to persons suffering from bronchial affections.

The water-supply is entirely from wells.

There is no system of drainage, unless cesspools accumulating the solids and allowing the fluids to saturate the adjacent soil may be so called. This system is already showing its effects upon the water-supply, and it can be a matter of very short time only before Plainfield's present water-supply will be unfit for use. The property-owners of the Netherwood section have united in a system of sewerage, from their western slope, connecting from house to house and emptying into the fields between them and the city proper. A drain, partly open, receives the overflow from the cesspools of Hotel Netherwood, runs across the fields to the gutter of Leland avenue, thence across LeGrand and South avenues, under the railroad bridge, into North avenue, where it is lost. In its course it receives the overflow from several cesspools. Another drain, on the northern slope, receives the overflow of several cesspools, runs across the fields towards the railroad, and is lost; still another runs westerly under the gutter of Le Grand avenue to foot of hill, thence into field, where it is lost. The Peace street sewer, starting from the receivers at the railroad bridge on Park avenue along North avenue, tapped by nearly all the buildings on that street, running through an immense cesspool at the depot, which receives all the filth from that building, thence, with a tap from the receivers under the railroad bridge on Peace street, through Peace street, crossing Second and Front streets, runs under Stiger's lane into Green brook. The Somerset street sewer, starting at Front street and Park avenue, runs through Front and Somerset streets and empties into Green brook, under the Somerset street bridge, carrying much filth. The New street sewer, intended to convey surface-water into the brook, starts from Sixth street, with receivers at Sixth, Fifth, Fourth, Third, Second and Front streets, and empties into the brook. From present indications only surface-water passes through it. Another sewer runs through the Serrall property, Front street and Girard avenue, emptying into the brook. Although ample sureties forbid any but surface-water entering it, the mouth at times shows the surface-water far from clean.

These sewers are all amply washed out with every rain and are thoroughly ventilated at the receivers.

The Peace street sewer is 2,000 feet long; the Somerset street sewer 400 feet long; the New street sewer 2,100 feet long, and the Serrall sewer 1,200 feet long. They are stone or brick arches or tile of large size their whole length. The accumulations in the receivers are removed by the city's orders. Their grade is ample for practical purposes.

Nearly all the streets are macadamized, and but little labor or expense is required to make the road-bed of our streets unexcelled by any and equaled by few cities anywhere.
Reports of contagious diseases are made to the Board of Health and filed by the City Health Inspector.

Deaths are reported to the City Physician. Births and marriages are reported to the City Clerk. Co-operation of the schools and Health Board has enabled us to control contagious diseases. No provision is made for vaccination unless small-pox becomes prevalent.

The salary of the City Physician is $250 per annum; that of the Health Inspector is $375.

The only disease which has made itself conspicuous during the past year has been a very mild form of scarlet fever, of which there have been, up to December first, seventy-two cases. None have resulted fatally, except from injudicious exposure during convalescence.

UNION TOWNSHIP. - Report from D. Hobart Sayre, Sec'y.

We have the honor to report that for the past year the health of the township has been good, above the average, as compared with the last five years.

No complaints of any kind have been before us. In the matter of roads, some improvement is being made, crushed stone coming in use instead of the old plan of building highways of mud or whatever is most convenient. When the tax-payer can see some visible improvement for his money he is willing to be taxed. In almost all the road districts special tax has been raised in addition to the general tax.

The water-supply has been, during the late fall, in some localities, nearly a failure, many wells giving no water. This going to the streams has been a hardship. It is becoming a question, if wells are to give an unfailing supply, ought they not to be sunk below the rock which underlies this section?

WARREN COUNTY.

FRELINGHUYSEN TOWNSHIP. - Report from F. Rorbach, M.D.

The health of the township during the past year has been unusually good, in fact, fifty per cent. better than for any year since 1878. During the winter and spring months pneumonia was quite prevalent, but not to the extent of an epidemic. The cases were mostly of the asthenic type, but all recovered. No epidemics of any disease have occurred. Of scarlatina and measles, so prevalent the previous three years, but two cases of each have occurred. No cases of diphtheria, but three of typhoid fever, of which one died and two recovered. Malaria still exists, but to so much less extent and modified form, compared with previous years, that little is thought of it. So far this fall (since October 1st) rheumatism and neuralgia have been the most prevalent diseases, the former generally sub-acute. In August and September a few isolated cases of dysentery of sub-acute type were met with.

During the past three or four years nearly all of the farmers of the township have been selling their milk, which, by relieving their female help from the hard, straining, dairy work, has resulted in a marked reduction in the number of cases of some diseases.

HARMONY TOWNSHIP. - Report from J. D. De Witt, M.D.

We have nothing of any importance to communicate to your honorable Board, as, after a careful supervision of the health matters of the township, we find no special disease to report upon, as our township is one of the rural kind, without any towns or villages of any size; no manufacturing or any public works of any importance whatever.

Scarlet fever is now prevailing as an epidemic in the northern part of the township and in adjoining townships in a mild form.

HOPE TOWNSHIP. - Report from E. J. Bergen, M.D., Sec'y.

The past year it has not been necessary to call the Board together for any purpose, nor have any complaints been made, excepting the months of February and March, when there was an unusual number of deaths from pneumonia. There has not been more than the usual amount of sickness. A few cases of scarlet fever have occurred, of a mild type and with no deaths. Two cases of diphtheria have come to my knowledge, with one death.

Hog cholera is now prevailing here, and I would suggest that if the people could be informed by circulars or otherwise that there is no recognized mode of treating it successfully, and that it is only suppressed by rigid quarantine and the mode of quarantine, so as to have
perfect isolation of the well from the sick, it would possibly be the means of saving to the people hogs that now contract the disease and die by being confined with those that have it.

LOPACTONG TOWNSHIP. - Report from Jeremiah Yeisley, Sec'y.

It is becoming evident that the precautions taken by order of the State are being greatly appreciated by the people at large in the care which is evinced to conform to and further all the requirements of the laws of health. The general health of the township has been good. The mortality list, although somewhat greater than the preceding year, can be accounted for by the increase of population, and the unprecedented number of deaths of aged persons, many a death being of a person over the age of seventy years, leaving the percentage at about one out of every hundred inhabitants. There have been no prevalent diseases of any kind, and no diseases among the cattle, and on the whole, the year ending October 1st, 1886, has been one of general health, and for which we return thanks to the Giver of all good.

POHACTONG TOWNSHIP. - Report from Solomon W. Wieder, Sec'y.

No prevalent diseases this year to report; general public health good. An epidemic of measles has visited us, but without any deaths.

WASHINGTON. - Report from F. M. Cook, M.D., Sec'y.

About five years ago water was introduced by a private company. The supply is from a mountain stream about three miles from town. The water is a little muddy at certain seasons, generally after a heavy rain; it has an irony taste, and as the company have cleaned the reservoir several times no fault has been found. About half the people take it, others are supplied by cisterns. Drainage is not very perfect, but as yet no epidemics have arisen from this. There is a small creek running through the southern part of the town into which several of the larger buildings have introduced drain-pipes, but the majority of the people depend upon holes dug in the ground, walled up and covered, and when necessary are emptied. All houses have cellars, which in some portions of town in the spring have water in them.
REPORT OF THE COUNCIL OF ANALYSTS TO
THE STATE BOARD OF HEALTH.

INTRODUCTORY REPORT BY DR. ALBERT R. LEEDS, CHAIRMAN.

During the past year the official labors of the analysts have been
chiefly directed to the examination of milk, natural and artificial
butter, and to drinking-waters. The results have been seen in the
great diminution in the sale of adulterated milk; in the restraint
upon the fraudulent business in imitation butter (see report of Dairy
Commissioner), and in the closing of dangerous wells, and in the
improvement of many water-supplies. Prof. Cornwall has, in addi-
tion, made an inquiry into the subject of tobacco (not yet completed),
and Mr. Shippen Wallace, an examination into canned foods. I
desire to call attention more particularly to an inquiry into the
amount of

CARBON DIOXIDE IN SCHOOL-ROOM AIR.

This topic has been extensively treated in a very valuable paper
by the Secretary of the State Board, upon the general subject of heat-
ing and ventilation, which will be found in the ninth annual report.
I shall, therefore, not discuss the importance of determining the per-
centage of carbon dioxide in dwellings, further than to reiterate that
the air in a room becomes close, when as much as six per cent. of carbon
dioxide is present, and stifling when there are more than eight parts.
Also that the increase in the amount of carbon dioxide is usually
attended with the increase of organic impurities, the most important
of these being bacteria and fungi. On a future occasion I hope to
present the methods, with accompanying results, of biological exami-
nations of the air, made with a view of determining the kinds and
numbers of these living microscopic germs.

Now, as relates to the determination of carbon dioxide (familiarly
(313)
though erroneously called carbonic acid), the first subject of study was to find a rapid and sufficiently accurate method. I tried that of Angus Smith, which consists in taking a series of bottles ranging in capacity from one to twenty avoirdupois ounces, and finding which one of the series gives a precipitate when containing the air under examination, and when this air is shaken up in the bottle with half an ounce of clear lime-water. Although this method is apparently very simple, it is in reality troublesome, and the results which I obtained differed widely from those found by the accurate method given below. For it is not easy to obtain a series of suitable bottles of clear white glass, with very wide mouths, as directed, and of capacities proper to accompany the table of volumes and the corresponding carbon dioxide percentages. The sides of the bottle must be cleaned from every trace of carbonate of lime left from a preceding experiment, and the first appearance of turbidity or precipitate, is a very delicate point to determine. After many failures I gave up the method and tried that of sucking air through a small bottle by means of an India-rubber ball and syringe. Using a two-ounce bottle containing half an ounce of baryta-water, a precipitate so milky as to prevent words written on a label in lead pencil from being clearly seen through the bottle, marks the end of the experiment. If a two-ounce rubber ball is used, and by squeezing and relaxing this ball, five times two ounces of air is drawn through the baryta-water, then in case the air contains 8.8 parts of carbon dioxide in 10,000, the standard precipitate should be produced. If the air contains 7.4 parts per 100,000, then six balls full of air must be sucked through, and so on as indicated by a suitable table.

I failed entirely in attempting to make use of this method, the point of turbidity being just sufficient to make the writing illegible as seen through the bottle, being one I could not determine with any approach to precision.

Neither was the method in which the coloring matter known as phenolphthalein is used more successful. This dye-stuff strikes a beautiful red color with an alkaline substance like baryta. It has been proposed to use a very dilute baryta solution, the strength of which is known, and draw air through it until the carbon dioxide is sufficient to just combine with the baryta, as carbonate of baryta, and the red color just disappears. But on trial I found it would not disappear. A faint rose color remains even after sufficient carbon dioxide has been drawn through to combine with the baryta, and the right point to stop cannot be accurately ascertained.

The result of my own unsuccessful trials was to fall back upon a modified form of the method of Pettenkofer. It is both easy and accurate. It consists in using a number of flasks (I found large bottles answered the purpose), and finding the number of cubic centimeters of water each holds at the temperature of 16° C. (60° Fahr). A solution of oxalic acid is then made by dissolving 2.8636 grammes of pure crystallized acid in one liter of water; each cubic centimeter is then equivalent to one milligramme of carbon dioxide. Ten grammes of crystallized hydrate of baryta are then dissolved in three-quarter liter of water and filtered. The number of cubic centimeters of this filtered solution required to exactly neutralize sixty cubic centimeters of the oxalic acid is determined. This number will be less than sixty. The solution is then diluted until it is approximately equivalent to the acid solution, and the exact ratio determined. The large bottles are filled with air by a bellows, sixty cubic centimeters of baryta solution are poured in, the flask at once stoppered and allowed to remain so during three hours, the baryta being occasionally shaken up with the air. Of course the temperature of the air should be taken at the time the bottle is filled, and the bottle should be allowed to remain before filling in this air until it has acquired the same temperature. When the analysis is to be performed, the bottle is tilted up so as to allow the liquid to accumulate and the precipitate to settle at one side, and thirty cubic centimeters are transferred by means of a pipette provided with a rubber ball to a small narrow-mouthed flask. A drop of phenolphthalein solution is then added, and the standard oxalic solution run in until the red color just disappears. By a simple calculation and reference to a table giving the volumes of carbon dioxide corresponding to one milligramme of this gas at various temperatures, the relative volume per 10,000 in the air determined becomes known.

As illustrations of the preceding remarks, I may state that a school-room which, according to Angus Smith's bottle method, apparently contained ten parts of carbon dioxide in 10,000, really contained only 8.6 parts.

A visit to the public schools revealed the fact that the amounts of carbon dioxide were usually in great excess of that which should be present in well-ventilated rooms. I found on a clear, cold day, when the outside air was at the freezing point, and the carbon dioxide 4.18
parts per 10,000, the carbon dioxide in five rooms of a large public school in Hoboken was 21.5, 18.5, 14.2, 15.4 and 18.5 parts, respectively. The ventilation was mainly by opening the windows at the top, and the rooms were but little larger than what was absolutely required to seat the scholars. These were in the five rooms mentioned, forty-four, twenty-eight, thirty, thirty-two and thirty-eight in number.

The determination of the carbon dioxide would reveal, I am persuaded, in many cases a defective sanitary condition, and the necessity of using other ways than the mere opening of windows to secure the imperatively-needed quantities of fresh air.

NOTE.—As the examinations of the assigned articles by the other analysts for the past year are not completed, and as important work has been done by them as to dairy products and impure waters, other material will be retained for the next report.

REPORT OF THE MILK INSPECTOR.

BY W. K. NEWTON, M.D.

To the State Board of Health:

I herewith hand you my seventh annual report.

During the last session of the Legislature, an act to prevent deception in the sale of imitation butter was enacted, and the office of State Dairy Commissioner was created by that act. By the terms of the act, the office of Milk Inspector was merged into that of Dairy Commissioner, and the latter officer was required to report to the Legislature. As I was appointed to the office of Dairy Commissioner by your Board on April 3rd, it will be necessary for me to make elsewhere an extended report on the operations of the dairy protection act, but, as has been the custom heretofore, a report of the work done under the milk law during the past year is herewith presented to your Board.

The work has been carried on upon the plan followed for the past six years, and nearly all parts of the State have been visited by myself or my assistants.

Mr. Henry B. Everhart, who for a number of years has acted as assistant for Hudson county, was, by reason of his removal from the State, compelled to resign early in the summer. Mr. George W. McGuire was appointed to fill his place, and has already done excellent work in that county. The other assistants are the same as at the time of my last report.

The expenses for the year have been about eighteen hundred dollars, and nine hundred and twenty-five dollars have been collected as penalties by justices of the peace for violation of the law, and should have been paid into the treasury before this.

The local Board of Health of Newark has continued the work of inspection in that city under its own direction. That city and Asbury Park are the only places in the State where any attempt is made to
inspect milk independent of the State officers; hence, the remainder of
the State depends on our efforts to protect the consumers of this food.

The considerable study I have given this subject convinces me that
a central bureau under your direction will do more thorough and per-
sistent work than can be done by the many local authorities, and,
while we note the exceptions of Newark and Asbury Park, the people
would receive no protection, unless you had the power to enforce the
law.

The reports made by me, from year to year, are nearly all repeti-
tion, and while refraining from a more extended discussion of this
topic, I may add that the results of the enforcement of the milk law
have been uniform and beneficial.

Advances in the chemistry of milk analysis have not been marked
during the year, and I am not able to note any particular improve-
ment. Our chemists have done their work so thoroughly that they
are abreast of the times, and are on the watch for any perfection of
methods that may be suggested. It is not probable that any change
in the legal standard is desirable, but if any modification is contem-
plated it should be in the direction of increasing the stringency of the
present limit. This State standard of twelve per cent. of milk solids
was adopted after elaborate scientific investigations, and it is just and
equitable to all dealers in pure milk; hence it would be unwise to
listen to the clamor set up by interested persons who know nothing
of the subject, save through inaccurate reasoning based upon imper-
fect or unreliable tests.

The milk law is satisfactory to all concerned in the sale or con-
sumption of pure milk, and it has done much for the people of the
State; hence it is to be hoped that so beneficent a measure will always
receive the support of our representatives in the Legislature.

During the month of August it became my duty to investigate a
number of cases of sickness at Long Branch, due to impure milk, and
as the subject was of so great importance it was thought best to pub-
lish the results of our investigations in some reputable journal, and
not to wait until this report should appear. Accordingly, an exhaustive
paper on the subject of milk-poisoning was published in the Medical
News of September 25th, 1886.

The analyses of the suspected milk were made by Mr. Shippen
Wallace, one of our public analysts, and his work was checked off by
me.

The paper referred to above is presented here because it is deemed of
sufficient importance to be placed on permanent record in the reports
of your board:

"It is seldom that the investigator has the opportunity to trace to
its source the milk or other food that has caused sickness, but we have,
in these cases, been very fortunate in being able to follow every step
in the management of the milk, from the farm to the consumer. In
similar cases of poisoning by cheese and ice-cream which have been
investigated by Vaughan and others, although chemical analysis has
revealed the probable cause, and the toxic substance has been isolated,
some link in the chain of evidence has been wanting. But the his-
tory now to be related seems unique, because every portion of the
evidence is before us and we are able to demonstrate what the injuri-
ous material really is, besides offering other proof as to the possible
cause of the formation of this substance.

"On August 7th twenty-four persons at one of the hotels at Long
Branch were taken ill soon after supper. At another hotel, on the
same evening, nineteen persons were seized with the same form of
sickness. From one to four hours elapsed between the meal and the
first symptoms. The symptoms noticed were those of gastro-intestinal
irritation, similar to poisoning by any irritating material—that is,
nausea, vomiting, cramps, and collapse; a few had diarrhoea. Dry-
ness of the throat and a burning sensation in the oesophagus were
prominent symptoms.

"While the cause of the sickness was being sought for, and one week
after the first series of cases, thirty persons at another hotel were taken
ill with precisely the same symptoms as noticed in the first outbreak.

"Drs. S. H. Hunt and Williams, of Long Branch, attended all the
patients on both occasions. Dr. Hunt kindly furnishes the following
account of the cases:

"The symptoms were very similar to those of any case of gastro-
intestinal irritation. I was impressed with this fact, although there
was an unusual absence of diarrhoea in many of the cases. A few
would have several active movements and no vomiting, the poison or
cause being thus immediately removed; while in many cases it pro-
duced violent emesis, which was followed by collapse and failure of
the heart's action. Both occurred in a few instances, but the rule

*Parts of this article were originally printed in the Medical News, September 25th,
1886.
was the persistent and obstinate nausea and vomiting, with a tendency to exhaustion and collapse as seen in cholera. The convalescence and recovery were prompt, and in a few hours all were in their usual health, and no untoward symptoms followed the attack.

"The remedies employed were those usually indicated in such cases, such as antacids, stimulants, and in a few instances small hypodermic injections of morphia were administered.

"When the news of the outbreak was published I immediately set to work to ascertain the cause of the illness. The course of the investigation was about as follows:

"The character of the illness indicated, of course, that some article of food was the cause, and the first part of our task was to single out the one substance that seemed at fault. The cooking utensils were also suspected, because unclean copper vessels have often caused irritant poisoning. Articles of food, such as lobsters, crabs, blue-fish and Spanish mackerel, all of which at times, and with some persons very susceptible to gastric irritation, have produced toxic symptoms, were looked for, but it was found that none of these had been eaten at the time of the outbreak. The cooking vessels were examined, and all were found clean and bright and no evidence of corrosion was presented.

"Further inquiry revealed the fact that all who had been taken ill had used milk in greater or less quantities, and that persons who had not partaken of milk escaped entirely; corroborative of this it was ascertained that those who had used milk to the exclusion of all other food were violently ill. This was prominently noticed in the cases of infants fed from the bottle when nothing but uncooked milk was used. In one case an adult drank about a quart of the milk, and was almost immediately seized with violent vomiting followed by diarrhoea, and this by collapse. Suffice it to say that we were able to eliminate all other articles of food and to decide that the milk was the sole cause of the outbreak.

"Having been able to determine this, the next step was to discover why that article should, in these cases, cause so serious a form of sickness.

"The probable causes of this outbreak were outlined as follows:

1. Some chemical substance, such as borax, boric acid, salicylic acid, sodium bicarbonate, sodium sulphate, added to preserve the milk or to correct acidity.
2. The use of polluted water as an adulterant.
3. Some poisonous material accidentally present in the milk.
4. The use of milk from diseased cattle.
5. Improper feeding of the cattle.
6. Improper care of the milk.
7. The development in the milk of some ferment or ptoaine, such as tyrotoxin.

"At the time of the first outbreak, I was unable, unfortunately, to obtain any of the noxious milk, as that unconsumed had been destroyed, but at the second outbreak a liberal quantity was procured.

"It was soon ascertained that one dealer had supplied all the milk used at the three hotels where the cases of sickness had occurred; his name and address having been obtained, the next step in the investigation was to inspect all the farms and the cattle thereon, from which the milk was taken. It was also learned that two deliveries at the hotels were made daily, one in the morning and one in the evening; that the milk supplied at night was the sole cause of sickness, and that the milk from but one of the farms was at fault. The cows on this farm were found to be in good health, and, besides being at pasture, were well fed with bran, middlings and corn meal.

"So far, we had been able to eliminate as causes diseased cattle and improper feeding, and we were then compelled to consider the other possible sources of the toxic material.

"While the inspection of the farms was being made, the analysis of the milk was in progress. The results of this showed that no chemical substance had been added to the milk, that it was of average composition, that no polluted water had been used as a diluent, and that no poisonous metals were present. This result left us nothing to consider but two probable causes: improper care of the milk, and the presence of a ferment.

"As to the former much was soon learned. The cows were milked at the unusual and abnormal hours of midnight and noon, and the noon's milking—that which alone was followed by illness—was placed, white hot, in the cans, and then, without any attempt at cooling, celled eight miles during the warmest part of the day in a very hot month.

"This practice seemed to us sufficient to make the milk unpalatable, if not injurious, for it is well known that when fresh milk is closed up in a tight vessel and then deposited in a warm place, a very disagreeable odor and taste are developed. Old dairymen speak of the 'animal heat' as an entity, the removal of which is necessary in order that the milk shall keep well and have a pleasant taste. While
we do not give this thing a name, we are fully convinced that milk should be thoroughly ‘cured’ by proper chilling and aeration, before it is transported any distance or sold for consumption in towns or cities.

"This opinion is based on a study of the methods prevalent among experienced dairymen, who ship large quantities of milk to our great cities. The usual practice is to allow the milk to stand in open vessels, surrounded by ice or cold water, for from eight to twelve hours before transportation, and when placed on the cars it has a temperature of from 50° to 60°, and is delivered to the consumers in a perfectly sweet condition. The city of New York receive about 200,000 gallons each day from the surrounding country, and much of it brought in by the railroads has been on the cars for a time varying from six to twelve hours, yet we seldom hear of any of this milk undergoing the peculiar form of fermentation set up in the Long Branch milk. We may account for this by assuming that the proper care of the milk after it was taken from the cow, and the low temperature at which it was kept, have prevented the formation of any ferment; this opinion seems to be endorsed by all dairymen and managers of large creameries with whom we have consulted. They all agree in stating that milk maintained at a low temperature can be kept sweet and in a good condition for many days.

"We have dwelt on this branch of our topic somewhat extensively, because we are fully persuaded that the improper care of the milk had much to do with the illness it produced.

"The results of our inquiry having revealed so much, we next attempted to isolate some substance from the poisonous milk, in order that the proof might be more evident. A quantity of the milk that had caused sickness in the second outbreak was allowed to coagulate, was then thrown on a coarse filter, and the filtrate collected.

"This latter was highly acid, and was made slightly alkaline by the addition of potassium hydrate. This alkaline filtrate was now agitated with an equal volume of pure, dry ether, and allowed to stand for several hours, when the ethereal layer was drawn off by means of a pipette. Fresh ether was added to the residuum, then agitated, and when separated, was drawn off and added to the first ethereal extract. This was now allowed to evaporate spontaneously, and the residue, which seemed to contain a small amount of fat, was treated with distilled water and filtered, the filtrate treated with ether, the ethereal solution drawn off and allowed to evaporate, when we obtained a mass of needle-shaped crystals. This crystalline substance gave a blue color with potassium ferricyanide and ferro chloride, and reduced iodic acid. The crystals, when placed on the tongue, gave a burning sensation. A portion of the crystals was mixed with milk and fed to a cat, when, in the course of half an hour, the animal was seized with retching and vomiting, and was soon in a condition of collapse, from which it recovered in a few hours.

"From these experiments with this material, we were able to identify it as tyrotoxicon, a substance discovered and described by Prof. Victor C. Vaughan, of the University of Michigan. Although much has been published during the past two months concerning this substance, it will not be unprofitable, in this connection, to review the statements of the chemist who first described it.

"In the year 1883 about three hundred persons were taken violently ill after eating cheese, and Prof. Vaughan was requested by the Michigan State Board of Health to ascertain the cause. While engaged with this work, he discovered the substance which answered to the tests mentioned above, and which he called ‘tyrotoxicon’ (cheese poison).

In June, 1886, Prof. Vaughan was able to obtain this substance from ice-cream that had sickened some eighteen persons.

We are now able, for the first time, to demonstrate this new substance in poisonous milk, thus endorsing the views of Vaughan, who stated in his report that, doubtless, it would be discovered in cases in which milk had caused sickness.

As to the chemical character of tyrotoxicon, little is to be said, for a sufficient amount for an ultimate analysis was not obtained. Vaughan says: "The circumstances under which tyrotoxicon develops require further study. As has been shown, it may develop in normal milk, kept in a clean bottle for three months; but it is evident that in some instances it appears much earlier." (In the cases here reported it appeared in five hours.) "The production of this ptomaine is, in all probability, due either directly or indirectly to the growth of some micro-organism."

From a close analysis of the facts in the cases recorded in this article, I am of the opinion that the substance is allied, chemically, to butyric...
for the use of infants, especially in summer. Not only does such
treatment destroy the germs of lactic acid fermentation, but it dissi-
pates an actively irritant poison which is not unfrequently present in
greater or less amount.

"This investigation further teaches the important practical lesson
that milk, immediately after being drawn, should be placed in open
vessels and rapidly cooled by being surrounded by ice or cold water
before transportation. In this way fermentation, with the resulting
production of poisonous ptomaines, such as tyrotoxicon, is prevented,
and the milk is delivered in a condition proper for consumption."

It will be my duty to present to the Legislature a report on the
operations of the dairy protection act, and it does not seem necessary
to add to the length of this report by repeating what will be offered
to the authorities through another channel.

acid; that it is formed in the milk by fermentation; and that its forma-
tion may be prevented by keeping the milk at a low temperature; or
by properly cooling the milk soon after it is drawn from the cow. It
seems, also, important that the so-called "animal heat" be allowed to
escape. Boiling may dissipate the poison from milk that contains it;
this opinion is based on the fact that tyrotoxicon is changed and driven
off at a temperature of 180° Fahr.

The conclusions I arrived at, after weighing well all the facts ascer-
tained in the investigation, were, that the sickness at Long Branch was
caused by poisonous milk, and that the toxic material was tyrotoxicon.

The production of this substance was no doubt due to the improper
management of the milk—that is, too long a time was allowed to
elapse between the milking and the cooling of the milk; the latter not
being attended to until the milk was delivered to the hotel; whereas,
if the milk had been cooled immediately after it was drawn from the
cows, fermentation would not have ensued, and the resulting material,
tyrotoxicon, would not have been produced.

Since this investigation was made, Prof. Vaughan has found the
poison in milk that was the product of one cow and had caused violent
gastro-enteritis in an infant who had been fed with it. When this
milk was not used the infant slowly recovered, but an attack of the
disease resulted when more of the milk was taken.

The importance of the Long Branch discovery is commented on by
the editor of the Medical News in the following language:

"The paper is a most important contribution to sanitary science,
and its deductions must command widespread attention, since it is
evident that this cause of poisoning is liable at any moment to be
called into existence, with the same direful results.

"The practical value of the investigation lies in the fact that, by a
careful process of exclusion, there was obtained a rigorous demonstra-
tion not only of the origin of the late wholesale milk-poisoning at
Long Branch, but also, of the precise conditions under which the
poison in question was developed. It is now conclusively shown for
the first time that milk, warm from the cow, when placed in tight
cans, under conditions which greatly retard the dissipation of its heat,
will undergo change, with the development in the course of five hours
of enough of a poisonous ptomaine to cause alarming toxic symptoms
in those partaking of the milk even in small quantity.

"In view of the fact that tyrotoxicon, the poison thus developed, is
volatilized at the temperature of 180° Fahr., we find increased reason-
ableness in the routine practice of thoroughly boiling all milk intended
LAWS, CIRCULARS, ETC.

LAWS.

The last legislature consolidated into one act most of the laws passed within the last few years as to Health Boards in this State.

This law, with some accompanying references, was printed as Circular LVIII., and is at the command of all that desire it. It will be found to confer all necessary powers that can well be included in a general law. It does not include the law as to drainage or the adulteration of foods or the consolidated law as to the diseases of animals, which will be found in the report of the Board of Agriculture for the current year. Some of the law as to Vital Statistics also is not included, but is mostly to be found in Circular XXXIV. of the Board. References to various other laws of collateral interest will be found in Circular LVIII. It is not claimed that these laws are altogether perfect, but they will be found as available as most laws on the statute-book.

The chief difficulty arises from the passage of ordinances not in perfect accord with the laws. For the larger cities the ordinances of Paterson furnish a good model. For the smaller towns those of Lambertville will serve. Townships are generally wise in passing a few ordinances. The model given in the last report is a good one. At first it will often be sufficient to publish those sections contained in sections 6, 7, 18, 19, 20, (reference in section 20 being changed to the recent law.) Also from section 21 to the end.

In cities, some legislation which will bring plumbing plans under the inspection of competent persons is greatly to be desired. These should have the sanction of the State Board after the most expert approval. No injustice could then be done to plumbers. Great injustice is now done to many, and especially to the tenant class, in that houses are frequently rented which have been so imperfectly constructed as to their plumbing arrangements as to be a constant risk to the health of the occupants.
It is probable that some legislation should be had which would enable the State Board to proceed against any local nuisance which it could show to the Court of Chancery was a menace to public health, and was not attended to by the owner or by the local Board. It sometimes happens that the local Board is deterred from action by local obstacles, by lack of means or by ignorance as to modes of procedure. Personal or political or social reasons may be so operative locally as to prevent or circumvent local action. In such cases, a direct complaint or application to chancery by the State Board would give a full hearing to the person involved, while it would surmount any local reasons for neglect.

CIRCULARS.

During the past year several of the former Circulars have been reviewed and reprinted. Circulars LVII., LVIII. and XXIX. are mostly new.

The circulars have had large distribution, and many of them are in demand by Health Boards and private families when sickness occurs. Full circulation will prevent the extension of many a contagious disease. The more recent ones are herewith printed.

CIRCULAR XXIX.

OF THE

NEW JERSEY STATE BOARD OF HEALTH.

CHARITABLE AND PENAL INSTITUTIONS.

The law recently passed has directed the State Board of Health to an inquiry into the sanitary condition of Charitable and Penal Institutions of this State. The need of such inquiry has been made fully apparent in the experience of other States and countries. All such institutions have to deal with classes whose cleanliness and sanitary welfare are only secured by the most thorough administration, and by careful attention to the details of a personal and intelligent oversight. The duties of the Superintendents, if well performed, are far more arduous and responsible than is generally appreciated. Successful care depends upon proper buildings and grounds; proper structural arrangements as to water-supply, sewerage, heating and ventilation; upon a proper supply of food, raiment and work; upon special provisions for those who are sick or feeble, and such personal attention by officers and assistants as unites capability and faithfulness.

In PRISONS and JAILS most of the inmates are to return to society. The greatest care is needed that during detention there should be no habits acquired nor influences exerted which will tend to make the person worse than before. A hopefulness of promoting reform should be entertained and provided for.

In ALMS-HOUSES, there should be a constant effort to limit those habits which cause pauperism, and to prevent its continuance either by custom or inheritance. Statistics prove that by wise planning the State has great capacity for limiting dependency, and that physical care enters largely into consideration when we would better the condition of such classes. Every State has a wide duty in provision for this portion of its population, and in seeking to limit the pauperism, sickness or crime of those who have become its wards. Were it only a consideration of economy, it is to be remembered that these classes levy the heaviest tax that is paid for State, city, county and township expenses.

Asylums are so numerous in our counties, in addition to our two State Asylums, that all of them need the most careful supervision, since success of care and treatment so largely depends upon hygienic conditions.

It is easy for STEWARDS for the poor or for the managers of institutions, to fall into routine methods, or by want of vigilance, to allow various evils. Others have no appreciation of what proper sanitary care requires, and so approve their own plans, simply because they do not know of others which are far better. This Board, with its other duties, can only offer co-operation with local authorities in all that relates to the hygienic welfare of these classes. By comparing one with another, we shall find some that serve as models, while others will come to realize their defects. Already we have been able to suggest and aid in alterations and reforms which have met with ready response from local officers. The fourth report of this Board can be had by addressing by postal, State Health Board, Trenton, N. J. It contains—pages 89–112, pages 260–65, and pages 305–10—important
suggestions for all public institutions. Other important facts and
records will be found in later reports. Local Boards of Health, as
well as the immediate officers of institutions, are to remember that
the sanitary condition of public buildings located in their districts is
subject to their inquiry, and forms a part of their administration.
Here are some of the more common evils.

I. As to Buildings.—(a.) Too little air space for living and sleeping
apartments, especially in winter.
(b.) Too little care as to cellars and dampness around dwellings.
(c.) An alms-house smell, only to be corrected by frequent house-
cleaning and whitewashing.
(d.) Want of arrangements for the proper disposal of all excretions
and refuse.
(e.) Absence of good ventilation, which, even if dependent on
windows, would be much freer of draught if the windows extended
near the ceiling, and if air was let in when needed by raising the
lower sash and placing a strip of board all along under it, so as to
make the place for the air to come in between the two sashes.
(f.) Stoves which bake the air and overheat a small space about
them, but do not furnish an even temperature for rooms.
(g.) Absence of sufficient stairs or arrangements for escape in case
of fire.

II. As to Persons.—(h.) Absence of accommodations for the first
reception of inmates. No person should, as a rule, be received to any
public institution without first having a general bath, a cropping or
cleaning of the hair, and proper examination and change of clothing.
As a precaution against contagious diseases, the person should be kept
two weeks apart from the inmates. Vaccination is often required.
Neglect of such precautions has recently cost a county in this State
over five thousand dollars.
(i.) Absence of arrangements or of a system of thorough washing.
All charities should have provisions and administration by which at
least a weekly bathing is secured, unless some very special conditions
of ill-health forbid. It is a part of the necessary discipline.
(j.) Absence of accommodation for special cases of sickness. A
small building, separate from the rest, should always be at command
for cases of malignant or eruptive fevers or other special cases that
may occur.

III. As to Managers, Committees, etc.—(k.) There should be
monthly or quarterly inspections by directors, overseers or township
committees, which should fully certify as to sanitary conditions. This
not only prevents investigating committees, but prevents oversights,
and is an aid to stewards and superintendents in their work. Generally
it is best to have a schedule of questions as a guide and to fill out accurate answers. We can furnish schedule when desired. As far
as proper, inmates should be personally seen.

IV. As to Stewards, Prison Keepers, etc.—Some of them are excellent. Most of them do as well as they know how. Too many have routine
methods, and have not at all kept pace with valuable methods that
have been adopted in our best institutions. It is no unusual thing
for us to have to point out defects and ill-care to those who ought not
to need such information. The absence of a thorough discipline and
of a weekly sanitary inspection is the most common fault. INSPEC-
TION means to look into closets and corners, to question inmates, to
hear what they have to say, and to deal with all the minor details of
administration, not for fault-finding but for improvement.

(l.) It is very desirable that a BOOK be kept by every institution
that will show the time of entrance of inmates, their previous history,
their ages, social condition, each birth, the causes of sickness and death,
and other items such as are now always registered in well-ordered
institutions. That is a narrow view of a public charity which makes
it a mere receptacle or retreat. Such records come directly within the
line of that care of population which these institutions are meant to
subserve. One record or one year may not show much, but series of
records through series of years point to methods of prevention or limita-
tion too important to be overlooked.

(m.) We send with this circular a blank form of institutional inquiry,
with the request that it be accurately filled out, so far as the superin-
tendents, overseers or physicians of any State, city, county or town-
ship institution can fill the same, and be returned within one month,
by mail, to the State Board of Health, Trenton. Add whatever may
need to be said as to any special defects.

We are glad to furnish any information in our power, as to proper sanitary arrangements and care. So far as other duties will
permit, we will, when desired, co-operate with local authorities in
correcting defects or meeting special emergencies which may arise.

N. B.—The city clerk, assessor, or Board of Health to which this
circular is sent, will please see that it promptly reaches the county or
of well-being and happiness. We would remind you that hitherto the laws of one's own being and those of communities, constituting the great body of facts known as hygiene and sanitary science, have been very much neglected in the usual course of public instruction in this State. Thus the young have been permitted to grow up exposed to all the dangers to life and health which follow, inevitably, the disobedience of nature's laws.

"Is it not very certain that some of the time now spent in teaching branches of knowledge indirectly or remotely serviceable to the learning might, more profitably to the pupil and to the State, be devoted to imparting such knowledge as must needs be practically useful every day and hour of one's life?"

"Is it not equally evident that the kind of knowledge which contributes directly to the maintenance of health and vigor of body and mind, the prolongation of life, and the fullest development of all the faculties into a complete and perfect manhood and womanhood, must be second in importance to none other?"

"If this be true, is it not equally clear that instruction in Hygiene should be as systematically and thoroughly given in all grades of schools, as upon any other subject? Admit these propositions and you will agree that we need to modify, as speedily as possible, our scheme of education."

"It need hardly be said that the change, to be effectual, must be radical. Teachers must be themselves taught. Teachers' Institutes should make this subject a prominent part of each meeting. Superintendents should unitedly bring to bear all their influence to secure it a place in the regular course of study in the schools under their charge, and should stimulate the teachers to give their best efforts to make it as thoroughly practical as it will be intensely interesting when properly pursued. BOARDS OF TRUSTEES, upon whom now devolves the duty of determining the studies to be pursued in their respective districts, should at once take steps to introduce physical teaching and training in the course, and by faithful oversight see that it is adequately and properly taught. Not by occasional lectures here and there before bodies of teachers, not by bits of advice to pupils, on the part of well-meaning and well-informed teachers, can this work be properly done, but only by systematic oral and textbook instruction, as faithfully and persistently pursued as possible, and adapted to the ages and capacities of the pupils. It need hardly
be said that the subject is broad enough to engage the profoundest thought, yet its facts are the facts of every-day life, many of them so simple and so clear as to be readily taught and practiced."

While the response to these views was not rapid, steady progress was made. The Board sent out a circular for a sanitary report on each school-house of the State and received full responses from nearly every district. Some 1,600 replies are now on file with the State Superintendent of Schools, who has earnestly co-operated with us in the work. A course of instruction in Hygiene was last year organized in the State Normal School, and now each graduate is required to pass examination upon this as in other departments. Its importance has been prominently discussed before Teachers' Institutes, and in the various conferences now held by teachers in cities and in the various counties. We believe it is no longer doubted that all teachers need to make of this subject a special study, and that in all graded schools some of the classes should have systematic instruction upon the subject. In addition to text-books which have been prepared, we have several forms of syllabus, or outlines for instruction. There are also in our library, at the command of the teachers of the State, nearly all of the books which have been written under the titles of Anatomy, Physiology, Hygiene, Physical Education, Health, Temperance Physiologies, etc., a list of many of which is herewith given for reference. It is now feasible for any teacher to be prepared to teach in this department and to supplement some chosen text-book by an amount of information and practical illustration of the highest importance to the student. It is often possible to add, by way of experiment, in the departments of Physics and Chemistry, bearing on Hygiene, and to acquire such manual dexterity in Calisthenics as will much aid in the instruction. It has been found that manual training aids much in the discipline of the schools and in developing courage, honor, self-reliance and self-control. There is also need that the principles of Hygiene should be thoroughly applied in courses of education; that each child should know what are the conditions of health, what habits are to be cultivated to secure it, and what evils are to be avoided. Practical physiologists and educators are fast coming to the conclusion that there should, from time to time, be thorough examination of scholars with a view of knowing their general physical vigor, the condition of the eye and other senses, and the relation of their studies to their present mental capacity. It will not do to deal with children in masses or classes, forgetful of individual characteristics, abilities or disabilities. Methods of education are constantly under review, not only in reference to mental but to physical strain. The public school is intended to fit the scholar for the active duties of life. A majority of them will need to make a living by some form of manual employment. The care of the physical cannot, in such cases, be said to be secondary to that of the mental. We have already had occasion to acknowledge a prompt response on the part of the State public school officers and many Boards of Education and prominent teachers to the efforts made in this behalf, and issue this circular in order that they and all others may avail themselves of any aid we can furnish to this popular and needed demand of education. Its bearing upon the check of indulgence in the use of Stimulants and Narcotics, is all-important, as well as its general bearing on all that relates to the welfare of the citizen. The State is seeking healthy bodies as well as trained minds, both of which can be used in the common service of the State, of the family, and of the individual. It is now recognized that proper care of the body has much to do with all that tends to secure good, efficient and capable citizenship.

The following are some of the books to which reference can be made:

HYGIENE.

"Hygiene of Schools." By J. B. Budget, M.D. H. K. Lewis, London.

"The Art of Preserving Health." By J. Armstrong, M.D. G. W. Light, Boston.

"Uses and Abuses of Air." By J. H. Griscom, M.D. Redfield, New York.

REPORT OF THE BOARD OF HEALTH.

"Eyesight; Good and Bad." By R. B. Carter, M.D. Blakiston, Philadelphia, Pa.

"Laws of Health." By J. C. Hutchinson, M.D. Clark & Maynard, New York.

"Hints on Health." By Wm. E. Coale. Tickner & Fields, Boston.

"Healthy Life and Healthy Dwellings." By George Wilson, M.D. J. A. Churchill, London.

"Handbook of Hygiene." By Geo. Wilson, M.D. Lindsay & Blakiston, Philadelphia.

CIRCULARS AND LAWS.

ANATOMY AND PHYSIOLOGY.

"Practical Physiology." By E. Lancaster, M.D. D. Bouge, London.

"Principle of Mental Physiology." By Wm. B. Carpenter, M.D. C. Kegan, Paul & Co., London.

"Physiology and Hygiene." By J. C. Hutchinson, M.D. Clark & Maynard, New York.

GYMNASICS, ATHLETICS, CALISTHENICS AND TRAINING.

"Youth; its Care and Culture." By J. Mortimer-Granville. D. Bouge, London.

disease. It is for this reason that sanitary survey and topography have attracted the attention of the National Government, and may well concern a State which presents diversities already so recognized by common observation as to have led to preferences and selections of resorts in adaptation to different kinds and phases of disease. While these general observations are valuable, it is only by the close and confirmatory observations of experts and the tabulation of closely-noted facts that we arrive at well-sustained conclusions. It is fortunate for this State that its geology and topography are so well mapped as to afford an excellent basis for this kind of observation. After a conference with Prof. George H. Cook, the State Geologist, this Board has found it feasible to supply a sufficient number of maps to a sufficient number of observers to make this kind of observation practicable. It is proposed in connection with medical societies and other scientific societies or individual observers in the State, to place this map in the hands of some chosen observer, who, up to the year 1890, will collect from the township or city in which he resides such data as shall enable him to estimate the relation of his particular locality to disease. The areas chosen will be townships and cities, and, of the larger cities, wards, or some more natural divisions, with a map of reference pointing out the relations of each locality. With the facts from time to time furnished by our reports and vital and meteorological data, we shall hope to give fixedness of attention and uniformity of system to the observation. Much will depend upon the choice of an observer who is painstaking, and who has some skill in accurate methods of observation.

Such an observer would first study with care the locality with which he has to deal in all its tellurial conditions. He would inquire how it varies as to degrees and moisture, how far the wells and river beds indicate its usual and varying water level; how the relations of valleys, hills and bodies of water affect the degree of heat it receives, and how prevailing winds indicate its local changes or result from its adjacent relations.

He would seek from the assessor or city clerk the deaths in the district, with age, date and place of residence, in order to see whether for these years the relations of these to the general or precise locality could be discovered, and note explanatory views. To some degree, as in rheumatism or consumption, he would seek to know how far locality produced the malady or influenced its progress. If a part of
his township or ward had marked diversity from that in which he lived or over which he rode, he would select some careful observer to afford such information as appertained to his valley or hill, or waterfront. Often a few questions at the meetings of medical men would aid to give precision, in place of the casual impressions too apt to be accepted from a very few cases. The laws of locality thus become inflammatory as to disease. If, for instance, every house in a township could give the history of every case of disease that has occurred in it the last fifty years, and one skilled in etiology and classification could handle the data, he would come to know what significance to give to cases and learn from them to unravel causes far better, because of being a living witness and investigator, and so having sources for comparing and correcting observations. Thus not only the records of death, but of disease and the personal experience of local practitioners are secured. A map can be had by each president or reporter of a county or city society, as the property of the society, in order that views may be compared. A physician who has lived and practiced many years in one locality, and whose note-books can remind him with exactness of cases and circumstances, has really very much information as to climatic or other local causes which he can give and which ought not to die with him.

Short notes made at the end of each month as to local characteristics and diseases, and summed up at the end of each year, would aid much in the final summary. So soon as a full list of observers is secured, a very brief yearly report is desired, so as to assure a full return at the end of the period. For the small expense incurred in correspondence, provision will be made. As localities and the methods of individual observers are so diverse, no precise form will be given unless asked for. The design is rather to get the mature judgment of the observer, formed in his own way, except that it should depend upon the careful study and analysis of closely-noted facts and be formed on expert and continued investigations and reflections. It should be observation through precise methods rather than the promiscuous methods of unskilled observers. We hope by the time of the next decennial census to be able to get a sufficient number of data to give valuable guidance. The effort is to get, in connection with vital returns, the personal testimony of some competent observer. That experience is most valuable which, either by statistical or other methods, classifies knowledge, and so has breadth of view and system of analysis in arriving at conclusions.

When the physicians of any locality come to study accurately the deaths of each year, the diseases of each year, to compare vital statistics with their own observations, when they acquire the habit of being observers on a system to such a degree that their conclusions are arrived at not as hasty generalizations or from a few recent cases, but as the records of analyzed experiences, we always secure the most valuable facts as to public health and the prevention of disease. Carefully-collected statistics and carefully-collated experience, are the two factors of information upon which the State care of the health of the population must rely. We, therefore, ask societies and individuals to aid in this work, and all the more because it is not less vital to the progress and success of medical science and art, than it is to social and sanitary progress. Any physician who thus on a system files away his observations each three or six months, will have no difficulty at the close of the year, or at longer periods, in furnishing valuable data as to the diseases of his locality and suspected impairments to the general health.

By order of the Board,

Ezra M. Hunt, M.D.,
Secretary.

CIRCULAR LVII.

OF THE

STATE BOARD OF HEALTH OF NEW JERSEY.

TO THE PHYSICIANS OF THE STATE.

It is the belief of this Board that, to some degree, a larger proportion of the people of the State are coming to realize that the well-educated physician does not merely seek to cure disease, but is inquisitive as to its causes, in order to prevent its occurrence or modify its severity. He is thus a public benefit to the people and to the State, as well as of service to individuals in time of sickness or injury.

It has not escaped the attention of any practitioner of ten years' experience and observation in the State, that typhoid fever and diph-
theria, by their frequency and fatality, have singled themselves out as calling for some special study.

In the five years ending June 30th, 1883, there had been 2,818 deaths from typhoid fever reported, and 5,719 from diphtheria. From the latter, this is more than from small-pox, scarlet fever and measles combined. In the year ending June 30th, 1884, there were 640 deaths from typhoid fever, and 1,027 from diphtheria, or more than from small-pox, scarlet fever, measles and whooping-cough combined. In the year ending June 30th, 1885, there were 642 from typhoid fever and 1,496 from diphtheria, or more again than from all other communicable diseases combined.

Taking the aggregate for the seven years, we thus find that the two diseases, and especially diphtheria, have a prominence of fatality which stands for a very large aggregate of actual cases. It is also conceded that both of them come before us for very careful study, when we consider the means of preventing communicable diseases. One who has reason to meet with various physicians in these local outbreaks, comes to find among them more difference in their success in preventing than in treating these diseases. A few feel their duties to be to the patient, and give little heed to other persons or to surroundings. Others are fully aware of some of the facts as to the modes of spread of these diseases; but give verbal directions, which they do not see carried out with precision. The successful preventors and life-savers are those who combine comprehension and execution, and who see to it that the most thorough and exact details of isolation, dryness, ventilation, cleansing and disinfection are secured. There are physicians who rarely lose any but the first cases in any family. If only the majority could be brought up to the habits and methods of the few, many hundreds of lives would be saved to families and to the State.

But this circular has other purposes than that of mere suggestion, persuasion or the outlining of methods clearly indicated in Circular XLIV. If district medical societies or individual physicians would from year to year furnish exact clinical notes to this Board as to the facts ascertained, or as to failure, after close inquiry, to obtain facts as to mode of rise, progress, propagation and spread, or as to the results of separation, of antecedent treatment, of sanitary methods, etc., we would be enabled to classify the facts and make deductions therefrom as no single practitioner can in the field of his own practice. Postage, at least, would be remitted, and due credit given for the information.

If physicians of the State, who are competent and candid observers and accurate in their memory and record of clinical observations and experience, will unite in the effort at collective investigation, we believe these diseases will be reduced in frequency as well as decreased in fatality.

We therefore send out this circular with the hope and belief that some persons can be found in each city and county who will be willing to aid in an inquiry which involves the interests of more families and the lives of more persons than any other inquiry as to communicable diseases.

We send herewith a schedule of suggestive questions, marked by numbers or letters, answers to which can be given under the numbers or letters, without repetition of the questions. Where there has been a recent epidemic, we desire that, about at its close, an account of it should be transmitted, and that at least by the first of November of each year a summarized statement should reach us.

Typhoid Fever

1. Cases, sex, age, date.

2. Proof that it is typhoid fever.

3. Length of case and termination.

4. Statement of probable origin.

5. If its cause cannot be traced after much effort has been made, so state.

6. Reasons you have to think it to have sprung from an antecedent case, with detail of enough cases to illustrate your ground of belief.

7. Reasons you have to think that it, or any other cases, have developed de novo in the locality or person.

8. Your opinion as to whether there are other low forms of fever which depend on ordinary contamination of air or water, which resemble typhoid fever but are not the same.

9. Illustration of any case which you believe, in the start, not to have been typhoid fever, but which became so.
10. Statement as to the disposition you know to have been made of discharges and of soiled garments.

11. Was there neglect as to this before the case came under observation, or before it was recognized as typhoid fever?

12. How many cases of it have you attended, in persons over sixty years of age?

13. Have you known second attacks?

14. What do you think to be the incubating period? Grounds for your opinion.

15. What is your plan of isolation, disinfection and ablation of the patient?

16. Do you resort to any prophylactic medication in families where there are cases?

17. If you have accurate notes of cases, state the number of cases you have seen since July 1st, 1878, and what proportion have recovered.

DIPHTHERIA.

(a.) Cases, sex, age, date.

(b.) Proof that it is diphtheria.

(c.) Your views as to its relation to membranous croup, as derived from cases seen or treated by you.

(d.) Can you trace it to a previous case?

(e.) If not, give your view of the causes, with reasons for your views.

(f.) Are you able to associate it with confined dampness, or with those atmospheric conditions in which algae or fungi, or other like forms of vegetable growth abound?

(g.) Have you known it to follow the exposure of cesspool material, or other forms of filth, in "close weather," either to natural or artificial heat?

(h.) Give your opinion, with illustrative cases, as to whether any of the common forms of sore throat, or follicular tonsillitis, ever degenerate into diphtheria, or impart it to susceptible persons.

(i.) How often have you personally attended the same person with it?

(j.) Is it milder in second attacks?

(k.) When a person is attacked, what is your plan of isolation and disinfection?

(l.) What do you think to be its incubating period, and what are the grounds of your opinion?

(m.) Do you resort to any prophylactic medication to prevent others from contracting or developing it?

(n.) Have you had good results in attempts to limit it in schools or in families of children? And if so, state your methods.

(o.) If you have accurate notes of cases, state the number of cases you have seen since July 1st, 1878, and what proportion have recovered.

(p.) From this time onward, will you, both as to it and typhoid fever, keep an accurate record and so communicate with us as to aid in future inquiry?

(q.) Can you not, in your local society, appoint a special reporter who, in addition to the individual accounts of epidemics, will collect facts as to sparse or occasional cases reported by physicians?

For copies, address E. M. Hunt, M.D., Trenton, N. J. [1886.]
Chapter XXVIII.—Supplement to an act entitled “An act to provide for drainage, where the same is necessary to the public health,” approved March twenty-fourth, one thousand eight hundred and eighty-one.

Chapter LVI.—An act to authorize the construction of drains and sewers upon and across private property upon suitable compensation to the owner or owners thereof in incorporated towns in this State.

Chapter LXX.—Supplement to an act entitled “An act to provide for drainage and sewerage in densely-populated townships in which there is a public water-supply,” approved March fourth, one thousand eight hundred and eighty-four.

Chapter LXXXIII.—A further supplement to an act entitled “An act to limit the age and employment hours of children, minors and women, and to appoint an inspector for the enforcement of the same,” approved March fifth, one thousand eight hundred and eighty-three.

Chapter LXXXIV.—An act to prevent deception in the sale of oleomargarine, butterine or any imitation of dairy products, and to preserve the public health.

Chapter LXXXIX.—A supplement to an act entitled “An act to authorize cities to construct sewers and drains, and provide for the payment thereof,” approved March eighth, one thousand eight hundred and eighty-two.

Chapter CXI.—A supplement to an act entitled “An act to authorize the incorporation of rural cemetery associations and to regulate cemeteries” [Revision], approved April ninth, one thousand eight hundred and seventy-five.

Chapter CXLVIII.—An act to authorize cities of this state to purchase, construct and maintain a public bath.
MEDICAL REGISTRY.

In accordance with an act approved March 12th, 1881, and the supplement thereto approved March 22d, 1883, it is made the duty of every person practicing medicine and surgery in this State to record a diploma, with date and place of graduation, or in case of twenty years' practice in any one locality, a certificate thereof in the office of the County Clerk of the county in which the practitioner settled.

This law means that only medical diplomas and such certificates as those above named shall be filed. It does not mean to give permission to file any and every writing and call it a diploma. Only a diploma that shows it is from a chartered medical college is to be recorded, and only the certificates of those who have practiced in this State twenty years without a diploma are to be filed.

The law is of some value as showing what authentication has been given to the person to begin the practice of so responsible and intricate an art as that of medicine and surgery. No one can review the lists of the past five years, without the strong impression that there has not been an increase in the proportionate number of well-educated practitioners in this State. While there is no need of any sect discrimination, in so far as legal status is concerned, there is need that illiteracy and incompetency be regarded as a menace to the public health. This subject so impressed the legislative authorities in Illinois that about 1880 there was passed a "Medical Practice Act." Its chief feature was to require an examination of those seeking to practice in the State by a medical Board, which did not seek to exclude those of any school who had been duly educated, but did seek by a fair examination to exclude all those who had not a requisite preparation. The result was that of about 7,000 practitioners 2,000 were found to have had no adequate preparation. The Legislature and the courts have fully sustained the law as in the interests of the public health and the common welfare of the people. The recent Governor says of it: "It was a law to protect the lives, the health, the morals and the
property of the people of the state." While this Board has not regarded it as its special function to seek special legislation on this subject, it is a serious question whether much harm is not being done to the citizens of the State by the great laxity of our laws as to medical practice. The lawyers of the State examine a lawyer settling in this State before he is admitted to practice in the courts. It seems that health is as important as property, and that there is at least equal reason why a license to practice medicine should emanate from those who by their acquired learning and reputation for skill, among us, are recognized as judges of real fitness.

ATLANTIC COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billing, Theodore G.</td>
<td>Hammonton</td>
<td>Mar. 31, 80</td>
<td>Hahman College, Philadelphia</td>
</tr>
<tr>
<td>Baily, Alfred William</td>
<td>Atlantic City</td>
<td>Mar. 31, 80</td>
<td>Hahman College, Philadelphia</td>
</tr>
<tr>
<td>Davidson, Cha. C.</td>
<td>Atlantic City</td>
<td>Mar. 13, 80</td>
<td>Jefferson Med. Coll., Philadelphia</td>
</tr>
<tr>
<td>Harris George M.</td>
<td>Atlantic City</td>
<td>Apr. 2, 80</td>
<td>Eclectic Med. Coll. of N. Y.</td>
</tr>
<tr>
<td>Hyde, Erasmus C.</td>
<td>Atlantic City</td>
<td>Apr. 12, 80</td>
<td>Hahman College, Philadelphia</td>
</tr>
<tr>
<td>Snyder, Leon A.</td>
<td>Atlantic City</td>
<td>Apr. 4, 80</td>
<td>Custode Medical Academy</td>
</tr>
<tr>
<td>Miller, Mary</td>
<td>Atlantic City</td>
<td>Apr. 12, 80</td>
<td>Hahman College, Philadelphia</td>
</tr>
</tbody>
</table>

BERGEN COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
</table>

BURLINGTON COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattison, Alfred S.</td>
<td>Moorestown</td>
<td>Mar. 25, 80</td>
<td>Col. of Phy. and Surg. of Med.</td>
</tr>
<tr>
<td>Garrabrant, Clarence</td>
<td>New Gretna</td>
<td>Mar. 25, 80</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Le Forge, C.</td>
<td>Jacobstown</td>
<td>Mar. 25, 80</td>
<td>Hahman Med. Coll., N. Y.</td>
</tr>
<tr>
<td>Waterman, Francis C.</td>
<td>Florence</td>
<td>Apr. 2, 80</td>
<td>Eclectic Med. Coll., Cincinnati</td>
</tr>
<tr>
<td>Haines, A. C.</td>
<td>Columbus</td>
<td>Apr. 2, 80</td>
<td>Hahman Med. Coll., N. Y.</td>
</tr>
<tr>
<td>House, C. Wesley</td>
<td>Columbus</td>
<td>Apr. 2, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Simpson, M. S.</td>
<td>Bordentown</td>
<td>Apr. 2, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Rialston, George</td>
<td>Tuckerton</td>
<td>Apr. 2, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Miller, Elijah</td>
<td>Tuckerton</td>
<td>May 1, 80</td>
<td>University of Pennsylvania</td>
</tr>
</tbody>
</table>

CAMDEN COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodward, George D.</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Hahman Medical College</td>
</tr>
<tr>
<td>Davis, Nehemiah</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Hahman Medical College</td>
</tr>
<tr>
<td>Benwell, Howard G.</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Greenleaf, J. C.</td>
<td>May 1, 80</td>
<td>University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Shekar, Harry H.</td>
<td>Camden</td>
<td>Apr. 29, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Swain, Uriah J.</td>
<td>Camden</td>
<td>Dec. 24, 80</td>
<td>Albany Medical College</td>
</tr>
</tbody>
</table>

CUMBERLAND COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borge, John</td>
<td>Port Norris</td>
<td>Mar. 25, 80</td>
<td>Botanic Med. Coll. of Ohio</td>
</tr>
<tr>
<td>Beley, Richard</td>
<td>Port Norris</td>
<td>Mar. 25, 80</td>
<td>Hahman College, Philadelphia</td>
</tr>
<tr>
<td>Eimer, Mathew K.</td>
<td>Bridgeton</td>
<td>May 1, 80</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Franz, Joseph A.</td>
<td>Eclectic Coll., Cincinnati</td>
<td>Apr. 2, 80</td>
<td>Eclectic Med. Coll., Cincinnati</td>
</tr>
<tr>
<td>Husted, William L.</td>
<td>South Vineyard</td>
<td>Apr. 2, 80</td>
<td>South Vineyard, N. Y.</td>
</tr>
<tr>
<td>Swaney Leverette</td>
<td>Bridgeton</td>
<td>Mar. 2, 80</td>
<td>Medical College of Indiana</td>
</tr>
</tbody>
</table>

CAPE MAY COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewson, Addinell, Jr.</td>
<td>Cape May City</td>
<td>Mar. 13, 80</td>
<td>Jefferson College, Philadelphia</td>
</tr>
<tr>
<td>St. John, Josephus Allen</td>
<td>Holly Beach</td>
<td>Mar. 13, 80</td>
<td>Chicago Medical College, Ill.</td>
</tr>
</tbody>
</table>

CUMBERLAND COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brockway, Millard</td>
<td>Newark</td>
<td>Mar. 25, 80</td>
<td>Medical College, New York</td>
</tr>
<tr>
<td>Bachland, Charles</td>
<td>Newark</td>
<td>Apr. 2, 80</td>
<td>Eclectic Coll., New York</td>
</tr>
<tr>
<td>Buchanan, Rebecca R.</td>
<td>May 22, 80</td>
<td>College of Cincinnati, Ohio</td>
<td></td>
</tr>
<tr>
<td>Braun, Rudolph</td>
<td>May 15, 80</td>
<td>Col. of Phy. and Surg., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Chace, Eloise E.</td>
<td>May 2, 80</td>
<td>Medical College, New York</td>
<td></td>
</tr>
<tr>
<td>Edwards, David J.</td>
<td>Newark</td>
<td>May 2, 80</td>
<td>Female College, New York</td>
</tr>
<tr>
<td>Fuller, Frances Van C.</td>
<td>May 19, 80</td>
<td>Female College, New York</td>
<td></td>
</tr>
<tr>
<td>Greene, Alonzo J.</td>
<td>May 22, 80</td>
<td>Eclectic Med. Ins., Cincinnati</td>
<td></td>
</tr>
<tr>
<td>Greene, F. E.</td>
<td>Jan. 26, 80</td>
<td>Eclectic Med. Ins., Cincinnati</td>
<td></td>
</tr>
<tr>
<td>Hesse, Frederick J.</td>
<td>Feb. 7, 80</td>
<td>Ohio Medical College</td>
<td></td>
</tr>
<tr>
<td>Kaiser, Fanny I.</td>
<td>June 20, 80</td>
<td>College of Med., New York</td>
<td></td>
</tr>
<tr>
<td>Meyers, Geo. H.</td>
<td>Mar. 13, 80</td>
<td>Col. of Phy. and Surg., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Nadler, Frederick Chas.</td>
<td>Newark</td>
<td>Mar. 2, 80</td>
<td>Medical College, New York</td>
</tr>
<tr>
<td>Odell, Francis Marion</td>
<td>May 15, 80</td>
<td>University of City of N. Y.</td>
<td></td>
</tr>
<tr>
<td>Phillips, George B.</td>
<td>May 5, 80</td>
<td>University of New York</td>
<td></td>
</tr>
<tr>
<td>Pearson, John C.</td>
<td>July 3, 80</td>
<td>Medical College, New York</td>
<td></td>
</tr>
</tbody>
</table>

ESSEX COUNTY

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Conferring Diploma and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodrow, George D.</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Hahman Medical College</td>
</tr>
<tr>
<td>Davis, Nehemiah</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Hahman Medical College</td>
</tr>
<tr>
<td>Benwell, Howard G.</td>
<td>Camden</td>
<td>Apr. 2, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Greenleaf, J. C.</td>
<td>May 1, 80</td>
<td>University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Shekar, Harry H.</td>
<td>Camden</td>
<td>Apr. 29, 80</td>
<td>Jefferson Medical College</td>
</tr>
<tr>
<td>Swain, Uriah J.</td>
<td>Camden</td>
<td>Dec. 24, 80</td>
<td>Albany Medical College</td>
</tr>
</tbody>
</table>
ESSEX COUNTY—Continued.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell, Reva</td>
<td></td>
<td>May 24, ’86 American Eclectic College</td>
<td></td>
</tr>
<tr>
<td>Rice, Marian Louise</td>
<td></td>
<td>Jun. 24, ’74 Charles Enosis</td>
<td></td>
</tr>
<tr>
<td>Schu, Wilhelmina M.</td>
<td>New York</td>
<td>Feb. 18, ’85 College of Midwifery, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Schuer, Charlotte A.</td>
<td>Newark</td>
<td>Mar. 12, ’86 New York Medical College</td>
<td></td>
</tr>
<tr>
<td>Spotswood, Sarah C.</td>
<td></td>
<td>Apr. 20, ’86 New York Coll.</td>
<td></td>
</tr>
<tr>
<td>Soward, John</td>
<td></td>
<td>Mar. 4, ’85 South Carolina Med. College</td>
<td></td>
</tr>
<tr>
<td>Way, Aaron C.</td>
<td></td>
<td>May 13, ’86 Coll. of Phy. and Surg. N. Y.</td>
<td></td>
</tr>
</tbody>
</table>

GLOUCESTER COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, Elijah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond, Wm. H.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South, Harry A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talman, John J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, Howard A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HUDSON COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayars, Sherman Edwin</td>
<td></td>
<td>Mar. 3, ’84 University Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>McMillan, John Wals</td>
<td></td>
<td>Feb. 18, ’86 Beach Inst. of Medicine</td>
<td></td>
</tr>
<tr>
<td>Theel, Gustave F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stegmaur, Julius A.</td>
<td></td>
<td>Mar. 8, ’86 Univ. Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Hohler, Samuel A.</td>
<td></td>
<td>Mar. 24, ’86 Hom. Coll. Cleveland, O.</td>
<td></td>
</tr>
<tr>
<td>Carpenter, Andrew J.</td>
<td></td>
<td>Apr. 8, ’86 Eclectic Med. Col., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Willis, Mary A.</td>
<td></td>
<td>Apr. 8, ’86 Eclectic Med. Col., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Hasting, A. J.</td>
<td></td>
<td>Apr. 8, ’86 Eclectic Med. Col., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Hayunga, George A.</td>
<td></td>
<td>Apr. 8, ’86 Eclectic Med. Col., N. Y.</td>
<td></td>
</tr>
<tr>
<td>Kelley, Bride Gertrude</td>
<td></td>
<td>Mar. 8, ’86 New York Coll. of Medicine</td>
<td></td>
</tr>
<tr>
<td>Luce, Edward F.</td>
<td></td>
<td>Apr. 8, ’86 Ohio Coll. of Physicians</td>
<td></td>
</tr>
<tr>
<td>Zettell, Charles Alfred</td>
<td></td>
<td>Apr. 25, ’81 Univ. Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Kuning, Richard E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codlip, Edward Arthur</td>
<td></td>
<td>Mar. 3, ’86 University City of N. Y.</td>
<td></td>
</tr>
<tr>
<td>Allen, Sam. Fairbanks</td>
<td></td>
<td>Mar. 8, ’86 University City of N. Y.</td>
<td></td>
</tr>
<tr>
<td>Warwick, Hill Sloane</td>
<td></td>
<td>Oct. 15, ’86 Coll. of Phy. and Surg. N. Y.</td>
<td></td>
</tr>
<tr>
<td>Good, Lewis George</td>
<td></td>
<td>July 18, ’86 University City of N. Y.</td>
<td></td>
</tr>
<tr>
<td>Esele, George Edwin</td>
<td></td>
<td>Mar. 3, ’86 Col. of Phy. and Surg. N. Y.</td>
<td></td>
</tr>
<tr>
<td>Dwyer, Timothy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICAL REGISTRY.

HUNTERDON COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrow, Edwin P.</td>
<td>Pottersville</td>
<td>May 21, ’86 Coll. of Phys. and Surg. N. Y.</td>
<td></td>
</tr>
<tr>
<td>Oley, Willard</td>
<td></td>
<td>May 14, ’86 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MERCER COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greens, J. Alonso</td>
<td></td>
<td>May 27, ’80 Coll. of Ed.</td>
<td></td>
</tr>
<tr>
<td>Costul, Henry B.</td>
<td></td>
<td>Apr. 25, ’80 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Beatty, Henry J.</td>
<td></td>
<td>Apr. 25, ’80 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Cooper, James J.</td>
<td></td>
<td>Apr. 25, ’80 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Halt, John F.</td>
<td></td>
<td>Apr. 25, ’80 University of Virginia, Va.</td>
<td></td>
</tr>
<tr>
<td>Rogers, William T.</td>
<td></td>
<td>Apr. 25, ’80 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Johnson, Edward W.</td>
<td></td>
<td>May 1, ’86 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Preston, Margaret H.</td>
<td></td>
<td>Apr. 25, ’80 University of Pennsylvania</td>
<td></td>
</tr>
</tbody>
</table>

MIDDLESEX COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis, David</td>
<td>Milltown</td>
<td>Mar. 15, ’86 Col. of Phys. and Surg. N. Y.</td>
<td></td>
</tr>
<tr>
<td>Greene, J. Alonso</td>
<td></td>
<td>May 27, ’86 Eclectic Med. Inst. of Ohio</td>
<td></td>
</tr>
<tr>
<td>Hanson, Frederick A. T.</td>
<td></td>
<td>May 27, ’86 Cincinnati Royal Univ.</td>
<td></td>
</tr>
<tr>
<td>Rive, Ferdinand E.</td>
<td>New Brunswick</td>
<td>May 1, ’86 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Siggins, John J.</td>
<td></td>
<td>May 1, ’86 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>William, Samuel S.</td>
<td>Bound Brook</td>
<td>May 29, ’86 Univ. of the City of N. Y.</td>
<td></td>
</tr>
</tbody>
</table>

MONMOUTH COUNTY.

<table>
<thead>
<tr>
<th>Name of Physician</th>
<th>P. O. Address</th>
<th>Date of Diploma</th>
<th>Institution Confering Diploma and Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alston, Arthur G.</td>
<td></td>
<td>Mar. 15, ’82 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Curtis, Thomas A.</td>
<td></td>
<td>May 13, ’86 Columbia College</td>
<td></td>
</tr>
<tr>
<td>Fuller, F. C.</td>
<td></td>
<td>May 13, ’86 Columbia College</td>
<td></td>
</tr>
<tr>
<td>Glaser, Joseph</td>
<td></td>
<td>May 13, ’86 Columbia College</td>
<td></td>
</tr>
<tr>
<td>Hunt, Frederick P.</td>
<td></td>
<td>May 26, ’86 University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Hyne, Frederick P.</td>
<td></td>
<td>May 26, ’86 Female Med. Academy, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Evett, Harry Havelock</td>
<td></td>
<td>May 1, ’86 University of Pennsylvania</td>
<td></td>
</tr>
</tbody>
</table>
MONMOUTH COUNTY—Continued.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennedy, Wm. C.</td>
<td>Mar. 4, '80</td>
<td>Missouri Medical College</td>
<td></td>
</tr>
<tr>
<td>Mortimer, Fairfield</td>
<td>Eclectic College, N. Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teets, Jacob</td>
<td>Nov. 9, '90</td>
<td>Col. Med. and Surg., N. Y.</td>
<td></td>
</tr>
</tbody>
</table>

MORRIS COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown, D. N.</td>
<td>Feb 22, '81</td>
<td>Eclectic Med. Col., N. Y</td>
<td></td>
</tr>
<tr>
<td>Macon, William</td>
<td>Aug. 1, '81</td>
<td>Bellevue Hosp. Col., N. Y</td>
<td></td>
</tr>
</tbody>
</table>

OCEAN COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cate, H. J. M.</td>
<td>June 13, '49</td>
<td>Vermont Medical College</td>
<td></td>
</tr>
<tr>
<td>Bryner, Joseph</td>
<td>New Egypt</td>
<td>Jefferson College, Phila.</td>
<td></td>
</tr>
<tr>
<td>Nelson, Thomas E.</td>
<td>Point Pleasant</td>
<td>May 15, '80</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Lc Forc, C. L.</td>
<td>Barnegat City</td>
<td>Mar. 29, '86</td>
<td>College of Medicine, Balt.</td>
</tr>
<tr>
<td>Williams, M. S.</td>
<td>Beach Haven</td>
<td>May 11, '72</td>
<td>Hamilton's C of N. Phila</td>
</tr>
</tbody>
</table>

PASSAIC COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brockenway, Millard F.</td>
<td>Mar. 6, '81</td>
<td>Eclectic Med. Col., N. Y</td>
<td></td>
</tr>
<tr>
<td>Heffernan, William</td>
<td>Paterson</td>
<td>Jun. 17, '87</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>Myers, George H.</td>
<td>Paterson</td>
<td>May 13, '86</td>
<td>Col. Phys. and Surg., N. Y.</td>
</tr>
<tr>
<td>McNair, David</td>
<td>Paterson</td>
<td>May 15, '85</td>
<td>N. Y. Med. Col.</td>
</tr>
</tbody>
</table>

SALEM COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels, L.</td>
<td>Lewistown, Me.</td>
<td>June 21, '86</td>
<td></td>
</tr>
<tr>
<td>James, William Henry</td>
<td>Jan. 2, '85</td>
<td>University of Vermont</td>
<td></td>
</tr>
</tbody>
</table>

MEDICAL REGISTRY.

SOMERSET COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Doren, Richard S.</td>
<td>Martinville</td>
<td></td>
<td>University of City of N. Y.</td>
</tr>
<tr>
<td>Wright, Joseph E.</td>
<td>Somerville</td>
<td>Apr. 15, '86</td>
<td></td>
</tr>
<tr>
<td>Hall, John V.</td>
<td>Somerville</td>
<td>Feb. 25, '75</td>
<td>Penna. Col. of Dental Surg.</td>
</tr>
<tr>
<td>Sovereen, A. W.</td>
<td>Plainfield</td>
<td>Apr. 15, '86</td>
<td>Col. of Phy. and Surg., Ont.</td>
</tr>
</tbody>
</table>

SUSSEX COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, Jacob W.</td>
<td>Layton</td>
<td></td>
<td>Columbia College, N. Y.</td>
</tr>
<tr>
<td>Dalgism, Edward S.</td>
<td>Branchville</td>
<td></td>
<td>University of New York.</td>
</tr>
</tbody>
</table>

UNION COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burdige, Paul W.</td>
<td>Rahway</td>
<td>Mar. 28, '78</td>
<td>University of Pennsylvania.</td>
</tr>
<tr>
<td>Kubly, Celia S.</td>
<td>Plainfield</td>
<td>Jun. 30, '86</td>
<td>Ann Arbor Univ. of Mich.</td>
</tr>
<tr>
<td>Murray, William H.</td>
<td>Plainfield</td>
<td>May 8, '81</td>
<td>Col. of Ph. and Surg., N. Y.</td>
</tr>
<tr>
<td>Penfield, Charles H.</td>
<td>Plainfield</td>
<td>Mar. 2, '81</td>
<td>State University of Iowa.</td>
</tr>
<tr>
<td>Pinnock, Frank B.</td>
<td>Elizabeth</td>
<td>Mar. 2, '85</td>
<td>University of New York.</td>
</tr>
<tr>
<td>Pendleton, E.</td>
<td>Brooklyn, N. Y</td>
<td>Mar. 6, '85</td>
<td>University of City of N. Y.</td>
</tr>
<tr>
<td>Sovereen, A. W.</td>
<td>Plainfield</td>
<td>Apr. 20, '70</td>
<td>Col. of Phy. and Surg., Ont.</td>
</tr>
<tr>
<td>Wehli, Sophie</td>
<td>Elizabeth</td>
<td>Nov. 24, '85</td>
<td>Columbia Col. of Midwestern.</td>
</tr>
</tbody>
</table>

WARREN COUNTY.

<table>
<thead>
<tr>
<th>NAME OF PHYSICIAN</th>
<th>P. O. ADDRESS</th>
<th>DATE OF DIPLOMA</th>
<th>INSTITUTION CONFERRING DIPLOMA AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cather, Henry Osborn</td>
<td>Phillipsburg</td>
<td></td>
<td>Pension.</td>
</tr>
<tr>
<td>Hoagland, Bunn W.</td>
<td>Oxford Furnace</td>
<td></td>
<td>Pension.</td>
</tr>
<tr>
<td>Pauley, Combs</td>
<td>Philadelphia</td>
<td></td>
<td>Pension.</td>
</tr>
<tr>
<td>Cook, Richard L.</td>
<td>Philadelphia</td>
<td></td>
<td>Pension.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Col. of Phy. and Surg., Md.</td>
</tr>
</tbody>
</table>
REPORT
OF THE
BUREAU OF VITAL STATISTICS
OF THE
STATE OF NEW JERSEY
FOR THE
Statistical Year from July 1st, 1885, to July 1st, 1886.
WITH CLIMATOLOGY, ETC.

DEPARTMENT OF STATE.
TO HON. HENRY C. KELSEY, SECRETARY OF STATE.

By EZRA M. HUNT, M.D., Sc.D.
Secretary and Medical Superintendent of Vital Statistics.
REPORT OF VITAL STATISTICS.

INTRODUCTION.

The wealth and welfare of a State reside in its population more than in any other of its resources. Indeed, its numbers and condition are the only definition and test of its prosperity. It is in vain that we point to all its other possessions, if we are not able to secure for it inhabitants, and such inhabitants as have at least an average length of life and a good degree of health. That nation makes a great achievement which is increasing in a population that shows more than an average length of life and more than an average of effective working life. Over-production is more likely to occur in some other directions than in that which secures a healthy native population, with vigor for all industrial occupations, and with that prosperity and happiness which such health and such life are likely to secure.

Nordhoff has well said, “There is no surplus population in the world. When there appears to be it is only that some one is in the wrong place. Enable any such one to go elsewhere, and teach him that he shall, if need be, do something else, and he is no longer surplus, but highly necessary to civilization. More than one-half of our planet still lies waste and useless, and suffers for lack of strong arms and stout hearts to redeem it. Long ago the words of Solomon were on record: ‘In the multitude of the people is the king’s honor, but in the want of people is the destruction of the prince.’” Even this can be said of such a State as this. It is because, in the interests of political economy not less than in those of comfort and contentment, we need to keep account with the population, that vital statistics have a defence even beyond all other statistics. They form, in many respects, the basis on which all other statistics rest. Since it has been proven that so many diseases are avoidable or can be avoided, it becomes essential to trace human life in its vital relationships, in order
that we may know how to prolong it and how to protect it from evils incident to life and labor, but which admit of modification and control.

Dr. Owen had said what Spencer has repeated, that “the average duration of human life is the most definite measure we can apply to the advance of civilization, which also means national prosperity.” Many of the European countries have so long and so thoroughly tested the advisability and success of such records that newer countries can follow out the system with the greatest confidence in the good results. For instance, there has been in the last ten years a marked and progressive reduction in the English death-rate, which comparisons of localities show to have to a good degree resulted from a study of the sickness and mortality and of the sanitary improvements resulting therefrom. When for ten years England and Wales can show a death-rate of less than 20 per thousand, and the largest cities of England taken together a rate of 20.9 per thousand and a progressive reduction, we have a model up to which we have great reason to attempt to work. “It cannot,” says one, “in the interests of further health progress, be too constantly borne in mind that the commencement of this period of reduced death-rate was coincident with the coming into full operation of the Public Health Acts of 1872 and 1875. The effect of this reduced death-rate upon the numbers and longevity of the English people is phenomenal. The Registrar-General points out that the reduction in the death-rate in the last five years implies that ‘more than 281,000 persons in England and Wales survived that period, whose deaths would have been recorded had the mean rate of mortality been equal to that prevailing in the ten years of 1871–80,’ in the latter half of which period the improvement in the public health had already set in. With regard to the increased longevity of the population, Mr. Noel Humphreys, in a paper read before the Statistical Society in 1883, showed that the effect of a reduction in the mean death-rate from 22.5 in 1838–51 to 20.8 in 1876–80 would be to add two years to the mean duration of life of every male, and three years and a half to that of every female born. The further reduction of the death-rate in the last five years to 19.3 implies a still greater additional lengthening of the mean duration of life in England.”

Liverpool was once noted for its excessive mortality. It entered upon a system of exact record of vital facts as to its population and of systematic care of the city, for its sanitary improvement. We insert the following comment of the London Lancet on the results:

“In the annual report of 1886 on the city of Liverpool we have some interesting information bearing on the gradual improvements which are there being effected in securing an improvement of the public health. We have recently adverted to some of these in connection with the report of the city engineer on the sewers; and it is not less important to note the steps that are being taken to get rid of the bad house-property, which has for so long a time been one of the greatest evils which the corporation have had to contend with. The insanitary property purchased in 1885 included 411 houses, and during the same period 631 houses were demolished. This may be taken as a type of the work which is steadily in progress; and Dr. Stopford Taylor points to the results of these and other labors by showing that whereas the average death-rate for the city was in ten years 1841–50 as high as 36 per 1,000, it has almost uniformly diminished during each subsequent period until it now stands at 23.7 per 1,000. He then goes on to point out that the application of the sanitary sciences to the improvement of public health is necessarily a work of an aggressive character, and hence, though its development is certain, yet the securing of its full advantages is a slow process. The aggressive action is also fully justified by the results obtained. Thus if during 1885 the same death-rate had prevailed as was in existence during the decennium 1861–60, the lives of no less than 3,917 persons who were living at the end of last year would have been sacrificed. And, assuming that there are ten cases of sickness for each death, there was a saving of 39,170 cases of disease, with all the attendant cost of nursing, medical attendance, &c. And not only so, but every life has its value so far as the State is concerned. Taking a series of observations on the wages of the agricultural laborer, and making the necessary deductions for the mean value of his subsistence during the various periods of his life, the mean net value of life in that class at all ages and in both sexes is not less than £110 per individual; whereas amongst the population of all grades the value would amount to a net profit of £159 per head. Now, applying this estimate, which is that determined by the late Dr. Farr, to the 3,917 persons whose lives were saved in Liverpool in 1885, there is a monetary saving of £622,803. And when to this is added the saving in the cost of sickness, funerals, loss of work, and increased pauperism, Dr. Stopford Taylor has the right to assume that there is enough to encourage the labors of the department over which he presides, and to inspire them with a hope of obtaining still greater benefits in the future.”
Another significant illustration is as follows:

"The Influence of Sanitary Works at Merthyr-Tydfl.—Mr. Dyke, the well-known health officer to the town of Merthyr-Tydfl (population, 101,441), has now completed a series of twenty annual reports, and in so doing he makes a summary showing the proportion of deaths per 10,000 persons living during a series of groups of years. The first period is that from 1845 to 1855, before any sanitary works were commenced; the second includes the six years 1856–61, during which paving works and removal of nuisances were attended to; the third relates to the four years 1862–65, whilst the works specified were still being carried out, and whilst water was also being laid on to the houses; the fourth includes the ten years 1866–75, when the water-supply was perfected, whilst the sewers and drains were being laid and whilst the sewage disposal was being completed; and a fifth deals with the ten years 1876–85, when the whole of these completed works were in operation. The table shows a gradual and continuous reduction of the death-rate from all causes from an average of 332 per 10,000 in 1845–55, to one of 231 in 1876–85, the proportionate mortality of infants under one year of age being reduced from 80 to 45 per 10,000. The rates from the contagious fevers—measles, scarlet fever and whooping-cough—do not seem to have been in any way affected by sanitary improvement. This we were prepared for; but it is curious that the same applies to diphtheria. Probably this is due, not so much to the fact that this latter disease is independent of sanitary conditions, as to the circumstance that diphtheria has of recent years been much more widely diffused in this country than it was during the earlier periods referred to in the table. On the other hand, there has been a marked diminution in the other forms of "fever." "Continued fever" has practically ceased to exist as a separate disease—a circumstance doubtless due to improved nomenclature; and the mortality from typhoid or enteric fever has fallen from 21 per 10,000. The death-rate from infantile diarrhea has also fallen from 11 ½ to 4 per 10,000; and the average age at death has increased from seventeen years and a half to twenty-seven years and a half, a clear gain of ten years of life. It will be observed that in making these comparisons Mr. Dyke is following out the plan adopted by Dr. Buchanan in 1866, when he reported on the results of the adoption of sanitary works in many of our large towns, including Merthyr-Tydfl, and hence it is appropriate that the information as to the results of the drying of the subsoil by the construction of sewers should be specially dealt with and brought up to current date. The influence of such drying has brought about a reduction in the phthisis death-rate from 38 to 22 per 10,000; but acute and chronic bronchitis and pneumonia have, during the same period, become more fatal, the corresponding rate for this group of affections having risen from 33 to 45—a result due, in the opinion of Mr. Dyke, to the continuance of occupancy of damp and unventilated dwellings. On the whole, this summary affords the most convincing proof that properly-planned and well-executed sanitary works result in a vast decrease in sickness and death, and by producing healthiness and increased duration of life, they become a source of profitable income to the communities affected by them."

Results similar to these are found in States like Massachusetts and in cities in which sanitary measures have been most vigorously carried out. We cannot record accurate results only because of shorter periods of observation and of the evils arising from the rapid and too often insanitary growth of cities.

MORTALITY AS A TEST OF HEALTHFULNESS.

The question is occasionally raised how far the number of deaths is a test of the healthfulness of a locality. It is recognized by all vital statisticians that the simple proportion of the annual deaths to the population is not alone an accurate measure of the general health. But it is equally recognized that its accurate estimation is an approximation to correctness in the hands of competent persons. It must be ascertained as one of the first data for comparisons. It has been conclusively proven that the laws of disturbance do not destroy the value of death-rates as a general and approximate test of health conditions. There must, however, be a careful attention to the inter-relations of birth-rates and death-rates; to the proportionate ages at death, and to the causes of the mortality. We must know the material, as subjected to disease, its age, its surroundings and its proportion to the less-susceptible portion of the population. When alongside of the mean duration of life we place the respective ages of the population a classification of the diseases of which they have died, comparisons of deaths, and of numbers, ages and causes of death in different parts of counties or districts, we have materials for safe conclusions, if only the numbers dealt with and the space of time are enough to eliminate such sources of error as arise in dealing with approximate figures in narrow limits. The laws of population, and the variations induced by artificial circumstances are so uniform as to admit of scientific determination. We may equate or get rid of a periodical or prevalent cause of fluctuation and present a result as it would have been, had the cause of fluctuation had no existence. For sanitary purposes we need most of
all to know (a) the proportion of deaths to population; (b) the number of deaths referable to the principal communicable diseases, and (c) the infant mortality measured by the proportion of deaths of children under one year of age to births; (d) as also, the number of deaths at classified ages. Guided by such testimony local authorities have over and over again proceeded to investigate the relations of the deaths to the kinds of sickness, and then of both to existing insanitary conditions. Improvements made on such a basis have produced such a decrease of death-rate as over and over again to have given such life results as those already quoted. The tables of each year in all of their divisions should be compared with those of previous years as, also, with changes in local conditions, which may have been operative. It is pleasant to know that in some of our larger cities, the health officers are not only profiting from present indications, but are compiling and comparing results on the records of several years, and different wards or localities.

MARRIAGE, AND LAWS AS TO IT.

The relation of marriage has to do with the fundamental interests of society. Whatever theories may have been advanced heretofore, or whatever customs may have been in vogue in different countries, the constitutional governments of modern civilization take it for granted that the family is the basis of the State. It recognizes no other unit of population. It concerns itself with the act and conditions of marriage, not merely because of certain legal necessities growing out of it as a compact and contract, but because its conditions concern national existence and national permanency. A nation consisting of unmarried men and unmarried women is inconceivable. Marriage is a part of the organic law of nations; a necessity for perpetuity. The fact that the law recognizes it as a civil relation does not in the least remove it from its close moral and social status. Although a contract, it is not dealt with as an ordinary contract. Although regulated wholly by statutory provision, yet the statutes respect ecclesiastical views as to many of the relationships beyond those of blood kinship, and still recognize the priest or minister as the chief officer to declare any such union consummated. It speaks of solemnizing marriage, of joining persons in the holy bonds of matrimony, and throughout the statutes applies such language to the act as performed by various officers. The law holds itself in close relation to all that concerns it, and claims the right to place upon it, and the modes and places of its performance, such restrictions as it believes the welfare of the State to demand. It therefore must give expression to this care in such ways as seem to conduct to this end, although some of them may seem arbitrary to those who have not fully studied the reasons.

Thus, it arbitrarily defines the age at which a person becomes marriageable without the consent of parents or guardians, and makes the ages different for the different parties to the contract. It prohibits a widower from marrying the wife of his deceased grandson or the mother of his deceased wife, as definitely as if they were of the closest blood relation.

In most countries it has not been considered obtrusive to demand that either the church or the State has due notice of the contemplated union on the ground that its interests were essentially involved in the act. In Roman law, the most complete marriage (confurraeatio) required the presence of two witnesses. The Germans early insisted upon previous notice. How particular the German government is at present, as to the conditions of and protection in marriage where there has been residence outside of the country, is illustrated in the following proclamation, recently made in a New Jersey paper as to a person who had gone from this State to Germany, for the purpose of marriage:

"PROCLAMATION.

"Adreas, Christian August W., farmer, residing in M., son of Johann Ernst W., farmer, and his wife Martha Elizabeth, whose maiden name was Temme, both deceased, and at the time of their death residing in M., in North America, intends to marry Anna Francisca Dorothea Margaretha R., living at Erfurt, daughter of Wilhelm R., tradesman, and his wife Charlotte Friederike, whose maiden name was S., both living at A. His intention is hereby made public, with the request that any objections to his marriage must be handed in writing to the undersigned magistrate within fourteen days from the day on which this proclamation appeared in the M. Inquirer.

"ERFURT (Germany), January 13th, 1888.

"Der STANDESBEAMTE,

"TEGETMEYER."

Until quite recently, in England, marriage was an ecclesiastical ordinance. In the Catholic Church it is a sacrament. Now, in
England, the celebration of marriages is regulated wholly by statutory legislation. It regulates marriages within the Church of England, but was intended to be of universal application, Jews and Quakers only being excepted. These were well known to be very strict as to conditions. The law requires either the publication of banns or a license from the proper ecclesiastical authority. As to banns, they must be published on three successive Sundays in the church of the parish in which the parties dwell. The bishop, however, may authorize the publishing of the banns in a public chapel. Seven days' notice must be given to the clergyman of the names of the parties, their place of abode and the time during which they have lived there.

France requires banns to be published, and eleven days must elapse, including two Sundays. The Roman Catholic Church is everywhere particular as to a knowledge of the parties. For instance, a priest does not perform the ceremony outside his parish, and a marriage, in order to be recognized by the Church, must be solemnized by the clergy. The ceremony always occurs in the daytime. The restrictions on hasty or improper marriages and upon divorce seem very effective.

It is to the great credit of this State that its laws as to divorce are much better guarded than in most of the States. The grounds on which divorce is granted are more restricted, and the relations of the Court of Chancery are such to the securing of testimony and to the final decision as to restrain a tendency too manifest in many countries. Up to 1795, the State law as to marriage was the same as that passed in 1709 under the Crown (George I). So far as license is concerned, it only required license when either party was under the age of twenty-one, and then required not only license and such notice as would give full time for parents or guardians to prevent the marriage, but also a bond of indemnity, as follows:

"Know all Men by these presents, that (We, David Allen and John Hyer, both of the County of Monmouth, are) holden and do stand justly indebted unto (his Excellency Jonathan Belcher, Esq., Captain-General, Governor-in-Chief of New Jersey,) in the sum of (five hundred pounds) of Lawful Money of New Jersey, to be paid to his said (Excellency), his Successors or Assigns, For the which Payment, well and truly to be made and done, (We) do bind (Our) selves, (Our) Heirs, Executors and Administrators, and every of them (Jointly & Severally) firmly by these presents. Sealed with (Our) Seal(s). Dated this (Nineteenth) Day of (July), Anno Domini One Thousand Seven Hundred and Forty (Eight.)"

"The Condition of this Obligation is such, That whereas the above-bounded (David Allen) hath obtained License of Marriage for (himself) of the one Party and for (Sarah Van Dike, of the same County,) Spinster, of the other Party: Now, if it shall not hereafter appear that they, the said (David Allen and Sarah Van Dike,) have any Lawful Let or Impediment of Precontract, Affinity or Consanguinity, to hinder their being joined in the Holy Band of Matrimony, and afterward their living together as Man and Wife, then this Obligation to be void, or else to stand and remain in full force and Virtue.

"Sealed and Delivered in the presence of David Allen.

"JOHN SMYTH.

JOHANNES HYER."

From 1736 to 1792, I think, this law lasted. In 1795 the law was so altered that the woman desiring marriage could be married after the age of eighteen without consent, but if either the man was less than twenty-one years of age, or the woman less than eighteen, certificate of consent must be produced and sworn to as correct by a witness accompanying the parties.

It is implied that if the parties claimed to be of age, and the person asked to perform the ceremony had any doubt, he might cause the parties to take oath or affirm their age. Such, at least, has been the precautionary custom with many of those officiating for young and unknown couples.

We are aware that there is a sentiment on the part of many that there are not enough restrictions against hasty or ill-advised marriages, and that there is need of some legislation to secure more deliberation or greater restraint. In Pennsylvania this has taken the form of an enactment requiring the obtaining of a license. This very feebly accomplishes the object aimed at, if the experience of other States has been similar to this. Since the law went into effect, the number of marriages in the city of Camden alone has increased over 2,000 a year. In the past year, between 2,500 and 3,000 Pennsylvania couples have been wedded in the State of New Jersey. It has so far become a Camden and clerical industry that at least one party has had a map constructed and placarded to show to anxious couples crossing the Camden ferry the way to the marriage bazaar. A bill for a similar law was before the New Jersey Legislature at its last session, but failed to become a law. It does not seem to us that any such State law will accomplish the object sought. So far from this, it not only does not restrain, but seems to prompt to marriages away from the home district and to lead to many confusions likely to arise whenever
rights of property or other questions as to these scattered marriages may come before the courts.

The marriage returns of persons non-resident in our State during the year ending June 30th, 1886, in the four counties bordering on Pennsylvania, were as follows:

Camden city .. 2,157
Hunterdon county .. 34
Mercer county and cities ... 71
Warren county and Phillipsburg 265

Total ... 2,637

There are many scattered additions in other cities and counties.

We are aware that some of the ministers of various denominations are thinking that there is need of some legislation. Some of them believe that a method of notice in all cases is in the interests of society and good morals, and advocate it on these grounds. The desire of the most, however, arises from that portion of the law which holds them responsible for the marriage of minors. Some supplements and amendments, and perhaps some imperfect statement in the laws themselves, may lead the non-legal reader not fully to understand the law. Not a single section of the foundation law of 1874 stands as then enacted, except the first section, defining the persons who are not inter-marriageable. Of Section 2, all remains except that the law (Chap. 143, 1882,) adds the judge of any court of common pleas, recorder and police justice and mayor of any city in this State as among those who may solemnize marriages. Sections 3, 4 and 5 remain, except so much as requires the person solemnizing the marriage to record or register a certificate in the county clerk's office. The only certificate now registered is that of marriage, as provided for in the law of 1879. This is now sent to the assessor or city clerk for transmission to the Bureau of Vital Statistics, at Trenton. But the person solemnizing marriage of a minor is still under the obligation of requiring a certificate of age in case of a minor, as provided in the law of 1874, and of taking the oath of any person who claims not to be a minor but is suspected of being such by the party asked to perform the ceremony.

The form of marriage return of this State has on its back a form, in which all persons can be asked to assert the facts contained in the certificate of return, as an additional protection. It is impossible for any one solemnizing a marriage of a minor to run any risk of suit if he will follow so much of the law as says that a minor shall have the certificate of the parent or guardian and be accompanied by a person who makes oath that he was present at the signing. In case a person appears whose statement as to his or her age is doubted, an oath can be required as to the correctness of the statement. It would be well if the law of 1879 required this to be transmitted with the return of marriage.

The only real risk arises to the parents or guardian that the child or ward will be married without consent. If there is need of greater guard as to this, how can it be secured? We have already expressed the doubt whether it can be done by the public notice of banns or a previous public license. The evil results mostly from causes that must be dealt with in families and has no remedy in legislation.

Legislation is not so much a remedy for all the infelicities of social life as some imagine. Yet, as it may to some degree restrain the results of social defects, and conservative legislation may be thought of, some of the suggestions made to us are as follows:

(a) Marriages should not be performed in the State by persons residing out of the State. (b) One of the parties should reside in the county or city in which the ceremony is performed. (c) The right to join persons in wedlock should not belong to so many persons or classes of officers. (d) No person should be allowed to perform the ceremony unless knowing one of the parties. (e) If license is required at all, it should only be of men under twenty-one and women under eighteen years of age, and only for about five days before marriage.

The chief embarrassment seems to arise from the fact that so many couples are led to secure marriage without consent of parents or guardians, by concealing their ages, and from the fact that the laws of the various States are so little in harmony.

It would be possible greatly to remedy this evil if the law required that all persons before proceeding to be married should make oath that each of them is beyond the age of eighteen and twenty-one, respectively, or, if not, should make oath in the presence of parent or guardian or of a witness to their signature that consent has been thus certified.

If any such law were enacted it need not require public notice. In such case those authorized to perform the ceremony should not have power to grant the license. The best persons to give the license would be the assessor of the township and the city clerks of the respective cities in which the party resides, as marriage certificates are
returnable to the State through these officers, and as convenience is thus consulted. It should then be the duty of all those performing the marriage ceremony to return such license with the certificate of marriage to the assessor or city clerk. All assessors and city clerks should be furnished the forms of license from the Bureau of Vital Statistics, as they are now furnished with blanks for other returns.

These suggestions are made not as recommendations, but because the last year large and influential church organizations and judicious citizens have given utterance to the view that somehow there should be greater guard put upon hasty or illegal marriages; greater protection for those authorized to solemnize marriage, and fewer marriages of unknown parties.

A review of the various laws and a knowledge of some of the evils arising from attempted restrictions lead us to believe that our laws as to marriage need no radical change, although some restatement may be desirable. If every one who has the right to perform this ceremony would be careful to marry no minor without an oath or affirmation that he or she is of full age, there would be fewer hasty marriages.

The returns are well made in this State. The originals and the index are made accessible for all legal purposes, through letters or personal request, and for vital statistic purposes they afford valuable facts bearing on population, social conditions and the causes of disease and death.

RETURNS OF BIRTHS.

As we need to know the birth-rate in order to know of the increase of native-born population, as also to know the actual growth in this material resource, and as also we need to know the age of the persons with whom disease and death are dealing, the record of the births becomes a necessity in any study of vital conditions of the population. In all countries it is the most difficult return to secure accurately. While it is generally conceded that the great legal contract of marriage must have record, and that a human being should not be placed under the ground without some record of the time, place and cause of death, births are more apt to be looked upon as family incidents of less import. But as no general statistician has ever ventured to suggest that such record should be omitted, and as each government reserves to itself the right of prescribing how and by whom such information shall be secured, we only need to adopt such methods and such securement as will be nearest to completeness. The plan in this State is as effective as in the other States, and in advance of most of them.

Estimates of correction, for comparison with marriage and death returns, are made in several ways.

A sample is as follows: Add together the total births of the five previous years and deduct from the sum the number of deaths under one year of age in the first of these years, under two in the second, and so on. The remainders will be the number now living under five. The average of birth-rate is, in England, about 35 per 1,000. In Glasgow, the average for the last five years was 38.4 per 1,000.

In this State the number of children living under five years, as shown by the census of 1885, was 77,819. If we add to this all deaths of children under five years of age for the year ending June 30th, 1886, all under four for the year next previous, all under three for the year before that, and so on for four years, then all those dying in the first of the five statistical years at such ages as show them to have been born in that year, we get a result so approximate as to be applicable in determining the real amount of age-material that has been exposed.

In this State the number of families as shown by the same census was 267,394. It is impracticable to attempt to make general conclusions from the birth-returns each year, but in the usual quinquennial and decennial revisions they become more available.

The returns of births for the past year, as made to this office, exceed those of any previous year.
THE RELATION OF THE PHYSICIAN AND THE SANITARIAN TO HEREDITY, WITH STATISTICS AS TO IT.

BY LABAN DENNIS, M.D., NEWARK, N. J.

In the following article no claim is made to original discovery of the truths presented. Many of them have long been the common possession of the medical profession. The interested perusal of some of the writings of Francis Galton, F.R.S., followed by Ribot, Greg, Elam, Brooks and others, suggested the thought that if the facts which they present could be laid before physicians and sanitarians, even though imperfectly, they would, perhaps, be aroused to study the subject more thoroughly, to read its accumulating literature, and thus to make practical application of these truths for the benefit of mankind.

While it has been in preparation, an article on "Heredity" by Dr. Maudsley has appeared in the Fortnightly Review; an address on the "Relation of Heredity to Health and Longevity" was delivered in June last by Dr. Carpenter, of Baltimore, before the Pennsylvania State Sanitary Association, and published in the Annals of Hygiene; Dr. Preston has published an article in the Popular Science Monthly for September, 1886, on "Hereditary Diseases and Race Culture," at a recent meeting of the British Scientific Association, Sir George Campbell, President of the section of Anthropology, took for his theme "Man Culture" and considered its relations to heredity. A reply to this by Grant Allen has appeared in the Fortnightly. These facts suffice to show that the minds of scientists and physicians are being aroused to the importance of our subject.

Some one has said, "Give me the first five years of a child's life and I care not who has charge of him afterward." Solomon said several thousand years ago, "Train up a child in the way he should go and when he is old he will not depart from it." On the other hand, Carlyle
in *Sartor Resartus* says: "It is maintained by Helvetius and his set, that an infant of genius is quite the same as any other infant, only that certain surprisingly favorable influences accompany him through life, especially through childhood, and expand him, while others lie close folded and continue dunces. * * * 'With which opinion,' cries Teufelsdörflch, 'I should as soon agree as with this other, that an acorn might, by favorable or unfavorable influences of soil and climate, be nursed into a cabbage or the cabbage seed into an oak. Nevertheless,' continues he, 'I too acknowledge the all but omnipotence of early culture and nurture. Hereby we have either a doddered dwarf bush, or a high-towering, wide-shadowing tree; either a sick yellow cabbage or an edible, luxuriant green one. Of a truth, it is the duty of all men, especially of all philosophers, to note down with accuracy the characteristic circumstances of their education, what furthered, what hindered, what in any way modified it.' * * * Thus are stated briefly the opposing views which have been held as to the two great factors in human development, nature and nurture.

By *nature* we mean the product of those influences which for ages in the past have modified the human race, controlling, directing, stimulating or repressing; and so, presenting us the man inheriting all the vices and virtues of his progenitors. In this view we may say with Emerson, "Every man is a bundle of his ancestors." By *nurture* we mean the sum total of the agencies which may be brought to bear upon individuals after birth, whether by himself or his fellow-beings, for the direction and development of this nature.

Let us consider for a few minutes the relative importance of these two, and the physician's duty with reference to them. Heretofore the medical profession have been working on the side of nurture almost exclusively. But have we not duties yet unrecognized and consequently undone in the direction of nature? M. de Candolle, of the French Academy of Sciences, in a recent work on the laws of heredity, after an analysis of the lives and characters of two hundred scientific men of the last two centuries, arrives at the following general conclusions as stated in *Science*:

1. Heredity is a general law which admits but few exceptions.
2. The interruption of heredity through one or more generations (atavism) is rare, perhaps five or ten times in a hundred.
3. The more remarkable a person is for good or ill, the more numerous and pronounced are his characteristics.
4. Women show fewer distinctive characteristics than men.
5. All groups of characteristics are more likely to be transmitted by fathers than by mothers.
6. It is difficult to determine whether characteristics which have been acquired by education and other external circumstances are transmitted by heredity.
7. The most marked characteristics in an individual are generally those received from both parents, especially those received both from parents and other progenitors.

Mr. Galton, after carefully studying the lives of 180 distinguished scientific men of England, sets forth certain facts in a prominent light, which, for the purpose of understanding more clearly some of the laws that seem to govern heredity, we will analyze briefly.

Taking into consideration the antecedents of 107 of these men, we find descended from the upper and middle classes 104, from the lower, three. Hence, he says, "It is by no means the case that those who have raised themselves by their abilities are found to be able than their contemporaries who began their careers with advantages of fortune and social position. They are not more distinguished as original investigators, neither are they more discerning in those numerous questions, not strictly scientific, which happen to be brought before the councils of scientific societies. There can be no doubt but that the upper classes of a nation like our own, which are largely and continually recruited by selections from below, are by far the most productive of natural ability." Thus he indicates the hereditary value of education extending through several generations.

As to the value of primogeniture, in a total of ninety-nine recorded cases, sixty-one belonged to the elder half of the family.

He concludes, therefore, "that the elder sons have, on the whole, decided advantages of nurture over the younger."

Under the head of fertility he finds the families to which scientific men belonged usually large. Thus, in about one hundred cases, the total number of brothers and sisters of these men averages 6.30, while of those who attained thirty years of age the average is 4.80. Comparing with these figures the number of the children of the scientific men themselves, he finds the number of their living children (say of ages between five and thirty) to be 4.70. "This implies," he says, "a diminution of fertility as compared with that of their own parents, and confirms the common belief in the tendency to an extinction of
the families of men who work hard with the brain. "On the other hand, I shall show," he says, "that the health and energy of the scientific men are remarkably high; it therefore seems strange that there should be a falling off in their offspring." He finds the only characteristics common to those scientific men whose families were the smallest to have been that they possessed a relative deficiency of health and energy in respect to that of their own parents. "Their absolute health and energy may be high, far exceeding those of people generally, but I speak of a noticeable falling off from the yet more robust condition of the previous generation. It is this which appears to be dangerous to the continuance of the race."

Speaking of the qualities possessed by these men, he says, "It will be seen that the leading scientific men are generally endowed with great energy; many of the most successful among them have labored as earnest amateurs in extra professional hours, working far into the night." Of those who reported definitely as to the energy of their parents, by far the greater number derived this quality hereditarily from one or both.

As to their health, he says, "The excellence of the health of the men in my list is remarkable, considering that the majority are of middle and many of advanced ages. One-quarter of them state that they have excellent or very good health, a second quarter have good or fair, a third have good health since they attained manhood, and only one-quarter make complaints or reservations."

"It is positively startling to observe in these returns the strongly hereditary character of good and indifferent constitutions. * * * All statistical data concur in proving that healthy persons are far more likely than others to have healthy progeny; and this truth cannot be too often illustrated until it has taken such hold of the popular mind, that considerations of health and energy shall be of recognized importance in questions of marriage, as much so as the probabilities of rank and fortune."

Perseverance he finds to be a third quality upon which great stress is laid, and which is uniformly possessed by these men, and almost universally derived from their parents.

Practical business habits are generally prevalent, and fully one-half of those endowed with them in a decided degree accredit one or both of their parents with the same faculty.

Memory he finds an important ingredient in that aggregate of facul-
ties, which form general scientific abilities. That is shown by the fact that about one-quarter of the men on his list possessed it in a high degree; but it is not an essential one, because it is defective in about one case in fourteen. Its hereditary character is abundantly illustrated by the histories of his subjects.

Independence of character, as among the qualities of especial service to scientific men, he finds marked in excess in fifty of his correspondents. In only two was it below par. Its hereditary character is shown by the fact that the home atmosphere which these men breathed in their youth was generally saturated with it. In confirmation of this he refers to the strange variety of small and unfashionable religious sects to which they or their parents belonged. Thus some were Quakers, Faraday was a Sambedemanian, others were Moravians, Bible Christians; and Unitarians were numerous.

As showing the influence of hereditary causes in the production of the taste for science, his correspondents' replies show a larger proportion due to innate taste than any other cause.

Mr. Galton declares, "When nature and nurture compete for supremacy on equal terms, in the sense to be explained, the former proves the stronger. It is needless to insist that neither is self-sufficient; the highest natural endowments may be starved by defective nurture, while no carefulness of nurture can overcome the evil tendencies of an intrinsically bad physique, weak brain or brutal disposition. Differences of nurture stamp unmistakable marks on the disposition of the soldier, clergyman or scholar, but are wholly insufficient to efface the deeper marks of individual character. In the competition between nature and nurture, when the differences in either case do not exceed those which distinguish individuals of the same race living in the same country under no very exceptional conditions, nature certainly proves the stronger of the two."

This opinion strikingly corresponds with that of the physiologist Burdach, who says, "Heritage has in reality more power over our constitution and character than all the influences from without, whether moral or physical."

In two previous works, most interesting and instructive, "The Origin and Development of Human Faculty," and "Hereditary Genius," Mr. Galton shows how markedly those intellectual and physical powers which give stamina and distinction to families run through generations. He points out how early marriages give rap-
idly-increasing advantages in point of numbers to those stocks indulging in them. "Hence if the races best fitted to occupy the land are encouraged to marry early, they will breed down the others in a very few generations."

This brief summary will suffice to indicate Mr. Galton's estimate of the value of heredity in producing men of distinguished abilities.

Dr. Elam, in "A Physician's Problems," arrives at the following general conclusions: "In procreation, as in creation, we everywhere trace the operation of two principles, similarity and diversity. In obedience to the law of similarity, 'like produces like,' equally in species and in families. In obedience to the law of diversity, children differ from their parents and from each other. In accordance also with this law, there is the power of returning to the specific type, whatever may have been the modifications produced accidentally, or by the influence of circumstances, upon the race; even as, according to Dr. Darwin, the different varieties of pigeon evince a tendency to return to 'the Blue Rock' type. The diversity is produced by the very potency of operation of the law of similarity, whereby temporary and accidental conditions are propagated. Every formation of body, internal or external, every deformity or deficiency, from disease or accident, every habit and every aptitude—all these things are liable to be, or may be, transmitted to the offspring. In the case of accidental defects and modifications of the specific type, the offspring usually do not inherit them but return to the normal type. Intellectual endowments and aptitudes are liable to transmission, and according to the mental cultivation or neglect of the parents will be, as a general rule, the capacity and facility of learning of the children. This will be more evident in proportion to the number of generations through which such cultivation or neglect has been practiced. All moral qualities are transmissible from parent to child, with this important addition, that in the case of vicious tendencies or habits, the simple practice of the parent becomes the passion, the mania, the all but irresistible impulse of the child. Even when the very identical vice is not inherited, a morbid organization is the result, which shows itself in some allied morbid tendency or some serious physical lesion. All chronic diseases appear to be transmissible, either in the original form or in a transformation of the morbid tendency. These inheritances, normal or abnormal, are not always immediate from the parent, or even in a direct line, but they miss one or more generations, and sometimes have only appeared in collateral branches, as an uncle or grand-uncle. This may be due to the fact that some of the inherited qualities may lie dormant in one member of a family and be active in others. Of all morbid heritages, unsoundness of mind, in all forms, seems to be the most certain and constant, and the results form a considerable proportion of our criminal population. But whilst by the law of similarity children become subject to the imperfections of their parents, by the law of diversity they are enabled to escape from them. These evils are not necessarily entailed, and a proper comprehension of the principles upon which these diversities depend enables us to take such measures as will facilitate this escape. The offspring of that large portion of our population given up to intemperance and other forms of vice, inherit from their parents strong impulses and feeble wills, so as to become more or less irresponsible, and bear a peculiar relation to the law, such as needs special investigation. Matrimonial alliances should be so regulated as to avoid the most glaring evils mentioned above."

In support of these propositions, he adduces numerous facts which we can but briefly hint at. Thus he shows that the direct transmission of the qualities of the parent to the child is exhibited in external resemblance, in similarity of internal organization, in habit and gesture, in temperament, in instinctive impulses and in moral and intellectual tendencies and aptitudes. Also accidental defects and diseases are occasionally transmitted; certain vicious habits in parents and violations of hygienic law give rise to transformations and degenerations of both physical and moral nature, which may be said to foredoom the offspring to an unfortunate and miserable existence.

Resemblances of person, feature, etc., are illustrated by the Jews, gypsies, the aquiline nose of the Bourbons, the thick lip of the reigning house of Austria, which is said to be due to the marriage of the Emperor Maximilian with Mary of Burgundy over 300 years ago. The gigantic figures of the men and women of Potsdam are said to be due to the guards of Frederick William of Prussia having been quartered upon the town for fifty years. Breeders of cattle can modify at will a race by lengthening or shortening the limbs, increasing or diminishing the fat or muscle, or placing them in particular localities, as illustrated by the race-horse and dray-horse. Modes of walking, talking, peculiar gestures, left-handedness, secundity, susceptibility to the action of certain drugs, longevity, albinism and melanism, super-
flinty of parts, as six toes and fingers, peculiar tastes and dislikes for certain foods and drinks, are all transmissible. Education has power to modify the capacity of the offspring as shown by pointers and St. Bernard dogs. The same is true of men; for example, the children of savages are less amenable to instruction than those of civilized people. Mathematical and linguistic aptitudes run in families.

Elam says: "I cannot see any reason for acknowledging that bodily habits and faculties are hereditary, and denying it in regard to those of the mind." In this matter, he says, "there is not that kind and amount of regularity which bespeaks law."

Genius in its highest forms seems not to be transmitted; but, as Mr. Galton has shown, talent, ability and superior powers are.

Elam shows that the moral faculties are subject to the same law. Propensities and tendencies to virtue and vice are hereditary, not the acts themselves. Man's freedom is not obliterated, but he is destined to a life of more or less strife and temptation according as his inherited dispositions are active and vicious or the contrary. Lecky says: "There are men whose whole lives are spent in willing one thing and desiring the opposite."

All the passions appear to be distinctly hereditary, as anger, fear, envy, jealousy, libertinage, glutony, drunkenness.

Of the latter, a writer in the Psychological Journal says: "The most startling problem connected with intemperance is, that not only does it affect the health, morals and intelligence of its votaries, but they also inherit the fatal tendencies, and feel a craving for the very beverages which have acted as poisons on their system from the commencement of their being."

M. Morel says: "I have never seen the patient cured of his propensity whose tendencies to drink were derived from the hereditary predisposition given to him by his parents."

Special forms of crime are also hereditary. Lucas believes that in the formation of the criminal classes, hereditary influence is more powerful than education or example, adding "that as the latter would fail to make a musician, orator or mathematician, in default of inherited capacity, so they would fail to make a thief."

Theft has been known to run through at least three generations; so beating of parents, suicide, cruelty, vindictiveness and insolence are hereditary.

Not only are the permanent and established characteristics of parents transmitted to children, but often also temporary, transitory, accidental and morbid modifications of structure. Thus youth, maturity, age and precocity may be reproduced in the offspring with qualities belonging to each.

From fifty to eighty-four per cent. of the cases of insanity are estimated to be due to hereditary influences. Maudsley calls attention to the immense importance of hereditary taint as a cause of insanity, and says that two considerations are to be borne in mind, first, the taint is of varying intensity, and may be developed only under certain favorable conditions. Second, not only may insanity in the parents predispose to insanity in the children, but any nervous disease, epilepsy, hysteria or neuralgia, may do the same; so, conversely, insanity may predispose to other forms of nervous disease.

Thus, by combinations of nervous disorders and physical and moral sins in the parents, there are developed in the offspring morbid temperaments, special deformities and anomalies, intellectual and moral aberrations, impulsive natures, proneness to yield to certain temptations, imbecile judgments, enfeebled will and torpid conscience. In all such, moral liberty is weakened, and these are the parents of the "dangerous classes."

The evils attendant upon consanguineous marriages should likewise be considered in this connection. They have been pointed out very frequently to be idiocy, scrofula, deafness, blindness, and insanity. Even the union of persons unrelated, but of temperaments nearly alike, is not unattended by corresponding dangers.

The most complete and exhaustive presentation of the facts of heredity accessible to English readers, that has fallen into our hands, is the very able work of Th. Ribot, on "Heredity," (Appleton & Co.) translated from the French. This author has drawn largely from all the prominent writers on this and kindred topics, such as Lucas, Spencer, Darwin, Buckle, Burdach, Maudsley, and a host of others, so that his book is a miniature cyclopædia of most interesting and valuable facts to be carefully studied by everyone concerned for the well-being of the race.

In his introduction he calls attention to the facts of physiological heredity, showing how children resemble their parents in external structure, in general appearance, in the limbs, the trunk, the head, even in the nails and the hair, but especially in the countenance, expression or characteristic features. Strangely, too, children may
undergo such metamorphoses as shall cause one to resemble at one time the father and at another time the mother. Heredity may also be traced in the complexion of the skin, the shape and size of the body; thus, obesity has been known to make its appearance under all the disadvantages of hard labor and poverty. So, too, the transmission of peculiarities in the form, size and anomalies of the osseous system, as in the proportions of the cranium, thorax, pelvis, vertebral column, and even the smallest bones of the skeleton, are of daily observation. Even the heredity of excess or defect in the number of the vertebrae and the teeth has been seen. The circulatory, digestive and muscular systems obey the same laws which govern the transmission of the other internal systems of the organism. So, too, heredity regulates the proportions of the nervous system. This is evident in the general dimensions of the brain; it is often apparent in the size and even in the form of the cerebellar convolutions. It also regulates the fluids as well as the solid parts; the blood is more abundant in some families than in others, and this superabundance may transmit a predisposition to apoplexy, hemorrhage and inflammation. The same may be said with regard to the bile and lymph. So, too, fecundity, length of life, and those purely personal characteristics called idiosyncrasies are hereditarily transmitted. In some families the hair turns grey in early youth, and the vigor of the physical and intellectual faculties fails prematurely. In some, immunity from contagious diseases is a well-established fact. Heredity may transmit muscular strength in the various forms of motor energy, as seen in the families of athletes, prize-fighters, wrestlers and earlies. Some are possessed of exquisite dexterity and grace of movement, as shown by the transmission of a talent for dancing. So, too, peculiarities of voice with its defects, as stammering, speaking through the nose and lispig, the possession of great powers of singing, and the absence of all ear for melody, are transmissible. Even extreme loquacity seems to run in families. Dr. Lucas mentions the case of a servant girl who, when dismissed for incessant talking, not only to others but to dumb beasts, to inanimate things, and even aloud to herself, said to her employer: "It is no fault of mine; it comes to me from my father; the same fault in him drove my mother distracted, and one of his brothers was like me." The transmission of anomalies of organization is a well-observed fact. Thus, hirsute excretions of the skin running through five generations have been observed; so, too, albinism, rickets, lameness, hare-lip and all deviations from the normal type are seen. It is a disputed question whether these variations remain fixed or return gradually to the normal type. In proof of the latter may be mentioned the case of the Colburn family, in which each member had six fingers and toes. The anomaly continued through four generations.

The ratio of normal to abnormal was, in the first generation, 1 to 35; second generation, 1 to 14; third generation, 1 to 3.2; showing a return to the normal type taking place very rapidly.

On this same point Dr. Gull says: "The strength of modern therapeutics lies in the clearer perception than formerly of the great truth that diseases are but perverted life processes, and have for their natural history not only a beginning, but a period of culmination and decline. The effects of disease may be for a third or fourth generation, but the laws of health are for a thousand."

Ribot points out, too, that even peculiar habits and modes of physical exertion are transmissible.

The bulk of his work, however, is taken up with the consideration of the heredity of intellectual and moral qualities. Thus, in his first chapter, he points out how natural instincts in men and animals are transmitted. In the next, how sensorial qualities, those of touch, sight, hearing, smell and taste, whether defective or in excess, are handed down through generations. In another he considers the gifts of memory with all its peculiarities, and shows how it is heritable. In the next he takes up the work of the imagination, as in writers, poets, painters and musicians, citing numerous cases of its hereditary character. In the fifth he considers the powers of the intellect, as exhibited in men of science, philosophers, economists and men of letters. In the sixth he treats of the sentiments and their abnormal variations, the passions, showing the heredity of general sensibility, of antipathies, of the sexual appetite, of dipsomania, of moral tendencies and their opposites, gaming, avarice, theft and homicide. In the seventh he considers the heredity of the will, the two classes of the mind active and contemplative, the transmissibility of the active faculties in statesmen and soldiers. In the eighth he takes up the heredity of national characteristics, and in the ninth morbid psychological phenomena, such as insanity, hallucination, suicide, homicidal monomania, demoniacal possession, hypochondria, presentiments, mania, dementia and general paralysis. In part second he considers
of that which it has already followed, and he might devote his medi-
cum of power, intelligence and kindly feeling to render its future
progress less slow and painful. Man has already furthered evolution
very considerably, half unconsciously, and for his own personal
advantages, but he has not yet risen to the conviction that it is his
religious duty to do so deliberately and systematically."

We are met here, however, by another difficulty. Evolution among
races has been governed by the principles of the "survival of the
fittest."

Says Mr. Greg: "The abler, the stronger; the more advanced, the
finer, in short, are still the favored ones; succeed in the competition,
exterminate, govern, supersede, fight, eat, or work the inferior tribes
out of existence." As instances we may mention the Indians of the
Antilles, the red man of North America, the South Sea Islander, the
Australian and even the New Zealander.

This principle of natural selection holds good also in the case of
nations, examples of which are the Greeks overpowered by the Romans,
and they in turn by the rude Northern warriors.

But when we come to the case of individuals in a people, or classes
in a community, the principle would appear to fail, and the law is no
longer supreme. Civilization with its social, moral and material
complications has introduced a disturbing and conflicting element.
It is no longer the strongest, the healthiest, the most perfectly organized.
It is not men of the finest physique, the largest brain, the most
developed intelligence, the best morale, that are favored and successful
in the struggle for existence; rather often those emasculated by luxury
and those damaged by want, those rendered reckless by squalid poverty,
and those whose physical and mental energies have been sapped, and
whose characters have been grievously impaired by long indulgence
and forestalled desires. Respect for life has preserved thousands with
tainted constitutions, and frames weakened by malady or waste.
"Brains bearing subtle and hereditary mischief in their recesses are
suffered to transmit their terrible inheritance of evil to other genera-
tions, and to spread it through a whole community." Security for
property, with its transmission and enjoyment, has enabled many an
unworthy and incapable possessor and inheritor to take precedence
over others in many of the walks of life, to carry off the most desirable
brides from less-favored though nobler rivals, and make them the
mothers of a degenerating instead of an ever-improving race. Thus
both the upper and the lower classes of society are unfitted to carry forward the improvement of mankind. Both marry as early as they please, and have as many children as they please, the rich because it is in their power, the poor because they have no motive for abstinence, and scanty food and hard circumstances do not oppose, but rather encourage procreation. "It is the middle classes, those who form the energetic, reliable, improving element of the population, those who wish to rise, and do not choose to sink, those, in a word, that constitute the true strength and wealth and dignity of nations—it is those who abstain from marriage or postpone it." (Greg.) Mr. Galton also says: "Again, there is a constant tendency of the best men in the country to settle in the great cities, where marriages are less prolific and children less likely to live. Owing to these several causes, there is a steady check in an old civilization on the fertility of the able classes. The improvident and unambitious are those who chiefly keep up the breed. So the race gradually degenerates, becoming with each successive generation less fitted for a high civilization, although it retains the external appearances of one; until the time comes when the whole political and social fabric caves in, and a greater or less relapse towards barbarism takes place."

Thus the tendency in communities of advanced civilization to multiply from their lower rather than their higher specimens, constitutes one of the most formidable dangers with which that civilization is threatened. The counteracting influences it is to be hoped will be found in the spreading intelligence, the matured wisdom, the ripened self-control, in the social virtues which that civilization nurtures and in which it ought to culminate. (Greg.)

One other cause of the numerical failure of the higher types is to be found in the fact already alluded to by Mr. Galton, on discovering that the children of scientific men are not as numerous as those of their own fathers, namely, that cerebral development tends to lessen fecundity. It would seem, therefore, that herein lies one of the greatest dangers of a high order of civilization. The answer is so admirably given by Mr. Herbert Spencer, in his "Principles of Biology," that we give it in part as quoted by Mr. Greg:

"The necessary antagonism of individuation and genesis not only fulfills with precision the a priori law of maintenance of race, from the monad up to man, but insures the final attainment of the highest form of this maintenance, the form in which the amount of life shall be the greatest possible, and the births and deaths the fewest possible. The excessive fertility has rendered the process of civilization inevitable, and the process of civilization must inevitably diminish fertility, and at last destroy its excess. From the beginning, pressure of population has been the proximate cause of progress. It produced the original diffusion of the race. It compelled men to abandon predatory habits and take to agriculture. It led to the clearing of the earth's surface. It forced men into the social state; made social organization inevitable, and has developed the social sentiments. It has stimulated to progressive improvements in production, and to increased skill and intelligence. It is daily thrusting us into closer contact and more mutually dependent relationships. And after having caused, as it ultimately must, the due peopling of the globe, and the raising of all its habitable parts into the highest state of culture; after having brought all processes for the satisfaction of human wants to perfection; after having, at the same time, developed the intellect into complete competency for its work, and the feelings into complete fitness for social life, the pressure of population, as it gradually finishes its work, must gradually bring itself to an end."

Having thus briefly stated a few of the elements of the great problem before us, what we, as physicians, should be studying is, not merely how to relieve the suffering which comes into the world, and prolong the lives of the wretched and miserable, as well as of the healthy, but how to secure that a larger proportion of those born shall come as of right to the possession of an inheritance of health, long life, energy, well-balanced sensitiveness of organization, self-reliance and enthusiasm, which go to make the difference between one fitted to advance the world in its upward course, and one ever dependent on humanity for even a tolerable existence. Dr. Holmes has said: "There are people who think that everything may be done, if the doer, be he educator or physician, be only called 'in season.' No doubt; but in season would be often a hundred or two years before the child was born, and people never send so early as that."

Let us now begin to save a few of the unborn.

What, then, are some of the methods whereby this is to be accomplished?

Man at the present is the outcome of past centuries of animal life upon the earth, the foremost product, "the heir of untold ages and in the van of circumstance." As no naturalist can tell how any
improved species originates, but has learned to seize the happy product, multiply, propagate, and still further develop it, so we should humbly and patiently study the conditions which seem to have produced any marked and noble stock in the human family, perpetuate and nourish the individuals, and encourage them to beget their like by suitable marriages, that their offspring may be a permanent possession on the earth.

Mr. Galton says: "It is hardly necessary to insist on the certainty that our present imperfect knowledge of the limitations and conditions of hereditary transmission will be steadily added to; but I would call attention again to the serious want of adequate materials for study in the form of life-histories. It is fortunately the case that many of the rising medical practitioners of the foremost rank are become strongly impressed with the necessity of possessing them, not only for the better knowledge of the theory of disease, but for the personal advantage of their patients, whom they now have to treat less appropriately than they otherwise would, through ignorance of their hereditary tendencies and of their illnesses in past years, the medical details of which are rarely remembered by the patient, even if he ever knew them. With the help of so powerful a personal motive for keeping life-histories, and of so influential a body as the medical profession to advocate its being done, and to show how to do it, there is considerable hope that the want of materials, to which I have alluded, will gradually be supplied."

Accordingly, he has prepared a "Life History Album," which, with a "Record of Family Faculties," is a veritable multum in parvo, so convenient and comprehensive that most intelligent families would be only too glad to have them brought to their notice for prompt and continuous use.

May we not, then, with the aid of these life-histories, arouse in every family an approach to some adequate appreciation of the immense value of the knowledge so acquired, both to the individuals themselves for the right governing of their lives as they come to maturity, and also to guide in the selection of appropriate companions whereby to propagate such qualities as shall most enrich the world?

Instruction may be given to parents and teachers in the matter of the several diatheses, and so children may be taught to recognize and shun that most wide-spread and pernicious one, the strumous, which now destroys more lives than any dreaded plague or pestilence. The effects of the intermarriage of families and of persons of like temperaments should be pointed out. Simple books in plain, untechnical language, like Fothergill's "Maintenance of Health," which has a chapter on the subject of inheritance, could be placed in the hands of all moderately-educated families. The careful study of Ribot's "Heredity" would greatly profit any intelligent household.

The subject should be insisted on as a vital matter of study in all higher schools in which physiology and hygiene are taught. Happily, many of our State Legislatures are being aroused to the overwhelming importance of the latter subject.

Thus, both in the family life and in the school, the growing youth would be taught to regard themselves as parts of a great system of rational beings, fitted by heredity to carry on certain works, and urged so to adjust themselves to their environment that the best of which they are capable may be accomplished, and the result of offspring be enabled to start on a slightly higher plane. If physicians and sanitarians will set this before them as the ideal standard up to which the family and the school must be brought, the two most important agencies for the elevation of the race will be won.

In the furtherance of this scheme, likewise we believe that the family physician should be, and if it were properly carried out, would become, more and more the trusted counselor and advisor of those under his charge. Matrimonial alliances would be more especially subjects for his wise and affectionate judgment. If it is the physician's duty, in common with all philanthropists, to protect the helpless, relieve the suffering and prolong the lives of the sick and diseased, it is more imperatively his duty to prevent, by all legitimate means, the birth of such into the world. Thus, he may aid in hastening, as Mr. Greg says, that "day when, as the moral tone of society advances, and men rise to some larger and more vivid perceptions of their mutual obligations, the propagation of vitiated constitutions, as well as of positive disease, will be universally condemned as culpable, and possibly prohibited as criminal. Some classes and communities have already, from time to time, reached this slight rising ground in social virtue, in reference to the three fearful maladies of insanity, leprosy and cretinism. Surely a further progress in knowledge and reflection, and a somewhat wider range of sympathy, may extend the list to scrofula, syphilis and consumption. I can discern no reason, beyond our own halting wisdom and deficient sense
of right, the strange ignorance of some classes, and the stranger senselessness of others, our utterly wonderful and persistent errors in political and social philosophy in nearly every line, why a very few generations should not have nearly eliminated from the community those who ought not to breed at all, and have taught prudence to those who ought to breed only in moderate and just proportions."

Business enterprises, changes of residence and occupation, with all the complicated effects of climate, food and clothing, and the relative value of new social relations, should be thoroughly discussed by families with the physician. They will be when life, in its highest and best sense, becomes "more than food and the body more than raiment."

We can only suggest a few ways in which the specialist may be helpful to society in this work. For example, Dr. J. S. Billings (Art. Hygiene, Pepper's Syst. Med.) says: "The importance of taking into account hereditary influences is well illustrated by the care which is taken to obtain information with regard to them in well-conducted life insurance companies. The medical examiners of such companies have their attention specially called to this matter, and the following extract from a manual of instructions shows how it is regarded from a business point of view: 'If consumption is found to have occurred in the family of the applicant, he is to be regarded not insurable under the following circumstances, viz.:"

<table>
<thead>
<tr>
<th>Years of age</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>In both parents, not insurable until.</td>
</tr>
<tr>
<td>30</td>
<td>In one parent, not insurable until (except for 10 ten-year endowments, then 20 years).</td>
</tr>
<tr>
<td>35</td>
<td>In two members, not parents.</td>
</tr>
<tr>
<td>20</td>
<td>In one member, brother or sister (except for 10 ten-year endowments, when peculiarly favorable).</td>
</tr>
</tbody>
</table>

"If apoplexy, paralysis or heart disease is found to have occurred in any two members of the applicant's family, he is to be regarded as insurable only upon the endowment plan, the term of insurance to expire prior to his reaching the age of fifty years. If insanity shall have so occurred (in two members), a provisionary clause is essential, and is attached to the policy by the company."

We ask, why should not such facts, the results of long years of work by medical examiners, be more generally published through the press, till the fathers and mothers of the country realize them as thoroughly as do the directors of insurance companies? If a life is not insurable, what is its marriageable value? What a burden of suffering and unrequited toil, sickness in the progeny and blasted hopes in the parents, will result from the union of such with others equally vitiated!

The hereditary transmission of diseases of the eyes, heart, lungs, nervous system, kidneys, digestive viscera, blood and generative organs should be constantly kept before the profession by specialists, and such facts and figures as may be made comprehensible to the laity should, for their guidance, be given to the press, and so spread broadcast through the land.

We believe that the pulpit should likewise be urged by the medical profession to contribute its share to the general good, in the preaching of a religion of humanity which should condemn disobedience of physical law as equally culpable with infractions of the moral code. In the light of this truth, the reckless imposition of disease, early blight, hopeless wretchedness and premature death upon helpless and inoffending offspring should be regarded and taught as a most heinous crime against man and God. The possession of the globe by a strong and noble race, and its conversion into a paradise, should be regarded as among the legitimate aims of the earthly life, and not merely the speedy transfer of that race to new and untried conditions in a life to come.

We are happy to see that some of the clergy, already aroused to the importance of this matter, are writing and preaching upon it.

The conclusions at which we arrive, then, from this hasty review may be summed up as follows:

In determining the mental and physical characters and efficiency of man, nature is more potential than nurture. Great powers of body and mind seem to run for generations in families. Early marriages favor the rapid multiplication of those engaging in them. Hence they should be encouraged in the strong, discouraged in the weak.

Defects of constitution descend to posterity even more certainly than their opposites. It becomes man's duty, therefore, systematically to favor the evolution of a higher race. Suitable matrimonial alliances are among the most powerful agencies for the accomplishment of this purpose. In this process the best and strongest races and nations have survived in the past, but civilization has introduced into society elements favoring the rich and the poor, worthless classes; and
the increasing demands of that civilization have made the intellectual less fertile, thus putting a check upon the growth of the best classes in society, which only intelligent and educated forethought can counteract.

Our duties are, then, to cultivate and perpetuate the nobler types of mankind. To do this we should encourage increase of knowledge among families by inducing them to write and study most diligently their life histories, and to govern their family alliances accordingly.

Teachers, also, should be instructed in their value and importance, that schools may become propagators of this class of truths.

The family physician should at once put those under his charge upon their guard as to certain hereditary evils to be avoided, and hold up to view the constitutional qualities more to be desired than wealth and social position.

Specialists should see that the press teems with the facts and figures which show the pitfalls and the prizes of life.

The clergy should be urged to preach that the heavenly life must begin in the right use of the earthly, and that men are best fitted to die when best prepared to live.

INFANT MORTALITY.

Under this division we include all children under five years of age. These can be divided into three classes, viz., those under one month, those between one month and one year of age, and those from one year to five. Those under one month are often spoken of separately, because they so often perish from causes incident to birth, or from disabilities that existed at the time of birth. Those under one year include the suckling period, and are apt to be involved in causes which affect the health of mothers. It is not so important to consider these separately from others under five years of age as it is those who die under one month, since in many respects they fall into the general class, and the special influences between one month and one year can be noted without full numerical comparison.

Deaths as a whole under five years of age are important to be considered separately, (a) because they to some degree indicate race vitality; (b) because of the large proportionate number that occurs; (c) and because so often they are the index of causes of mortality which are preventable and ought to be abated. Deaths that occur under one month so far show imperfect inheritance, or early mismanagement, or ill-intent, that they often need to be inquired into in order to separate these causes.

It is generally not difficult for physicians to determine between those causes of death which are developmental, and those which are diathetic or constitutional; those which occur by carelessness or ignorance of management, and those which are directly from neglect or ill-intent. We separate those under one month because unless these causes are very accurately specified the causes of death assigned are often misleading. Thus, marasmus and diarrhoea are often put down as causes of death for the first month, when these have been but incidents. As the child becomes a little older the special cause of sickness becomes more ascertainable. It is for this reason that in our tables of causes of death, the causes under one month are not added
to the general table unless the death has been caused by some contracted disease.

Deaths of children under one year of age are always analyzed with advantage because they are so numerous and so uniformly show a very marked influence resulting from modes of feeding. Diarrhoea, which is the cause of very many deaths under five years of age, is especially the cause of death to those under one year. In a record of the city of New Haven for five months, from June 1st, 1884, to November 1st, 1884, out of 258 deaths under five years of age 111 were from diarrhoea; all but seven being over one month and more than four-fifths being under one year.

In August, 1885, Dr. Lindsley, the health officer of New Haven, after noticing the death-rate among children from intestinal diseases, says the statement is in exact agreement with the observation of previous summers for several years. It shows how definitely the deaths of the little ones are associated with insanitary conditions about their houses, and it shows with equal force how exempt from fatal intestinal diseases are those fortunate babies who live in houses with good sanitation. There were thirty-two deaths in August from infantile diarrhoea. Of these the homes of only four have not been inspected. Of the remaining twenty-eight we have written reports in the office, and they are as follows: In twenty-seven of twenty-eight there was a privy in use in the yard. In the only case in which there was none the deficiency was supplemented by overcrowding, there being fifteen families in a block of tenements. In twenty-two of the twenty-six there were, in addition to the privies, the densely-local abomination, the cesspool. In six of these the situation was rendered worse by untrapped sinks, and in one other by a leaky drain. In eighteen of these houses well-water was the only supply, and every well was in close proximity to a privy and cesspool, often between the two. There were no other deaths from infantile diarrhoea reported to the registrar in August. Of the thirty-two the homes of twenty-eight have been inspected, and it is on our records that twenty-seven of the twenty-eight were living over privy-vaults and cesspools, and thirteen of them drinking the soakage of these filth-pits from the other hole in the ground called the well. Comment on the above facts seems unnecessary. The most obvious and positive influences which these facts teach is that fatal infantile diarrhoea is limited to those who are exposed to the exhalations of human excrement collected in masses

on the ground, and that the large portion of the population not so exposed are exempt from these intestinal disorders in a fatal form.

According to our last quinquennial record, out of 108,273 deaths 42,345 were under five years of age. Of these 11,768 died of diarrhoeal diseases. Those of adults being separately tabulated with diseases of the digestive tract. Of the 42,345 cases 27,704 where in cities of over 5,000 population.

These results are of much value because they agree with all statistics of the same kind which have been gathered in a large number of places, and through long periods of time by most careful observers.” A greater significance arises from the fact that careful investigation shows that artificial feeding greatly increases this death-rate. The New Haven inquiry, made by E. H. Jenkins, Ph.D., is so painstaking, and shows so much ability in making right use of figures and right deductions therefrom, that we cannot do better than quote so much of it as relates to this part of the subject:

“Of the 111 children who died of infantile diarrhoea, 14 were nursed entirely by their mothers, 12 others were nursed less than 1 month, 5 between 1 and 2 months, 2 between 2 and 3 months, 3 between 4 and 5 months, and 3 between 6 and 9 months. 5 were both nursed and bottle-fed, and of 13 cases the particulars are not known. 54 were not nursed at all. That is, out of 98 cases—

14.3 per cent. were children nursed by their mothers.
77.5 per cent. were children bottle-fed wholly or in part from the time they were 2 months old.
8.2 per cent. were children who were longer nursed than the others, but were bottle-fed at the time they were taken sick.

100.0

“Published statistics generally agree in this, that a large majority of those who die in infancy were fed by hand, that is, were fed in an unnatural way. In those countries where the death-rate of children under one year of age is least (under 15 per cent. of the total number born alive in Norway, Sweden and Ireland), the nursing of children by the mother is almost universal.

In Lower Bavaria and the Palatinate, where nursing by the mother is the exception, 50 per cent. die under one year old, while in a portion of Upper Bavaria, where all the children are nursed, in spite of poverty and a harsh climate, only 25 per cent. die. A recent English writer states that it is a well-known fact that during the Lancashire famine, when no work was to be had, the infant mortality rate fell considerably, in spite of decreased earnings.” In Coventry
the diarrheal death-rate among children, due to improper feeding, has been shown to vary considerably, and in proportion to the prosperity of trade, being reduced two-thirds when the trade was at the slackest and the mothers consequently thrown out of employment.

This English writer, F. E. Atkinson, Medical Officer of Health, voices the nearly unanimous opinion of medical authorities when he says, 'I believe there are very few cases where a child cannot be nursed by its own mother. Refusal to nurse in the working classes is caused by the necessity of the mother's working.' It has been proposed in England that the employment of women in factories within a year after the birth of a child should be prohibited by law. In Belgium, where the government has established public nurseries for the care of the children of working women, the death-rate among infants is lower than in any other country. This is largely due, no doubt, to the better care which the children receive at the nurseries, and especially in the matter of feeding.

The special dangers to which a child is exposed who is brought up by hand are manifold. In the first place, cow's milk at the best cannot be made to have the same chemical composition as mother's milk, with any amount of domestic doctoring; it is at best a food not fully suited to the needs of the infant. This unnatural food must be assimilated, too, while the digestive organs are imperfectly developed, and in a particularly sensitive condition.

Again, milk is known to be a common channel for distributing zymotic diseases. Living germs find in milk a most suitable breeding-place, and if it is exposed at all to the emanations or germs from any decomposing matter—and how difficult it is to avoid this under the most favorable circumstances housekeepers can testify—it will itself receive, multiply and transmit them.

If the milk is watered by the seller with impure water, or if his cans are washed in impure water, or if the milk after it is delivered to the family is diluted for the babe with bad water, or if it suffers contact with any noisome substance or emanations, there is great danger to the child.

Sometimes to the milk is added arrow-root or other farinaceous matters. If these are used in early infancy, before the secretion of saliva and the pancreatic fluid are begun—which alone render the assimilation of starch possible—they are of no use to the child, and if they have any effect at all it is only as irritants in the intestinal canal. Cless ascribes the high rate of infant mortality in Württemberg (45 per cent. in the first year) to improper feeding. Its cause is the infant-murdering Swabian meal porridge, the chief and favorite food for the nurseries of our rural population, the exact opposite of all that which furnishes an appropriate and healthful food for the newborn child, about the worst thing which human ignorance could devise as food for an infant.' (Cited in Conrad's Jahrbücher, Jan., 1882, p. 21.)
do in Great Britain and some continental cities. But we suffer more from tenements, from excessive heat, and from that form of diarrhea known as cholera infantum, which is scarcely known abroad. No one can study the mortality statistics of New York and Washington without seeing how great this excess is. It is followed too closely by Boston, Philadelphia, Baltimore, Chicago, St. Louis, and other crowded populations. The mortality for the second year presses quite closely upon that of the first, because children are so often exposed to the same class of causes.

Indeed the perils of the second year are greater in our own country than in most foreign cities. For all children between one and five years of age, a mixed and unsafe diet is far more common than abroad. Our profusion of fruits and vegetables, and the habit of allowing small children to eat at the family table and to indulge in its varieties, has a marked influence upon our infantile death-rates.

Children who have to depend on plain bread and some form of broth, may not seem to be so grandly nourished, but generally fare far better than those who are allowed to partake of a great variety of food. A close observer, who has been studying the infant mortality of New York City, recently said to us that in his opinion, the mortality among young children of over one year of age was more due to their free access to the general table and their too great variety of fruits, than to the impure milk to which it is so often attributed. The children of wage-workers are not generally provided with milk to drink, but depend much on cheap vegetables and a mixed diet. There is great need in our cities, to look after the markets and the hucksters, or venders of stale fruits and vegetables in the more crowded streets. We only need to compare the average infant mortality of country and city, and even of one part of a city with another, and especially during the summer months, to appreciate how much of artificial death there is in the world. Improper foods, foul air, crowded and dirty homes, insufficient air-space and light-space, and individual uncleanliness, combine to give these spots a death-rate greatly in excess, and with it to cause misery, and poverty, and crime, of which the number of deaths is only an imperfect index.

There are those who have come to look upon such deaths as the natural limitation of fecundity, and so a conservative part of the necessary order of things. The old adage, that the good die young, is supplanted by the equally erroneous one of the survival of the fittest.

It is still a fact, while here and there the death of an individual child may be a blessing, that only that political economy is correct which proceeds on the basis that avoidable death is an evil to the State, that the interests of the State require a system which aims at the preservation of the life and the health of those born into the world. It is a very significant teaching of history, that nations begin to die from loss of numbers, or loss of physical stamina, before they begin to die from direct political and moral causes.

The writer above referred to has so aptly presented this and other points connected therewith that we commend this further statement to the attention of all who, as patriots and citizens, as well as philanthropists, would conserve the welfare of the people.

"The death of any one who has not reached the age for working, producing and helping in society, but who has the possibility of all this within him, appears in itself considered a loss to society. An infant who has cost pain and care and labor which would otherwise have been immediately remunerative to his parents, whose chances of life are increasing each day at a very rapid rate, and who then fails and dies, is a loss to his parents and to society. He has been an expense; he might have repaid it by taking his parents' place in the world, but he died insolvent.

"Now it cannot be asserted that these children who die would or would not have been a help to society if they had lived. It is morally certain that some of them would have been only a hindrance. A certain number would have been drunkards, rakes, or paupers, and would have gone from the almshouse to the hospital, and from the hospital back to the almshouse and in the end to the potter's field.

"Possibly one will conclude, all things considered, that the world has lost no more than it has gained by these deaths, and that both the infants and the survivors are to be congratulated. In fact, the subject is often dismissed in this way: 'Poor things! They are saved a great deal of misery. Many of them were children of the very poor and the vicious. They are better dead than alive.' Now this is all very true and very narrow.

"The statistics given are chiefly important, not for what they tell of those who are buried, but for what they indicate of those who are living; not as a tale of past misery and future woe, but distress in which either those who are now in comfortable condition, or their descendants, will surely have a share.

"These deaths mean also a large number—many times that number—of sicknesses. They mean that the same things which destroyed so many have poisoned and crippled others so that they will lead lives of discomfort to themselves and their neighbors by reason of more or less enfeebled constitutions. They mean that many are growing up to
be kept from starving or dying of disease by the money which the more thirsty are working to earn.

"More than this; these deaths mean that as a result of overcrowding, uncleanliness and improper feeding, many have enfeebled nervous organizations which constantly crave stimulant and excitement to rouse them from their usual state of depression and which render them an easier prey to the attacks of moral evil. Drunkenness and lust will gather many victims who were saved from death in infancy and who will scatter the seeds of depravity and disease wherever they and their offspring go.

"They mean besides that during the prevalence of epidemics such as cholera, yellow fever, or typhoid, the places where nearly all these infant deaths occurred, and where, as has been shown, uncleanliness prevails, will be localities of special danger to the whole city, becoming centers from which the diseases will spread. At such times no places however clean will be safe while near them are these plague spots, the recruiting stations of disease.

"They mean once more that in the houses which are no homes by reason of filth and intemperance, social discontent and thoughts of revolution will live as they cannot live in real homes. 'Of a truth,' says a recent writer, 'the matter of house accommodation for the poor is the question of questions both for philanthropists and for statesmen, as here are the breeding dens of the roughs of all countries, nations and tongues.'

"Nothing is more certain than that these deaths and the things which cause them and which at the same time help largely to fill our hospitals, almshouses and jails, are to a large degree preventable, and to prevent them, or rather to do away with the causes that led to them, is the aim of all public sanitary effort and legislation.

"This endeavor is largely prompted by self-interest. If men will not help others out of ignorance and filth for the others' sakes, they must do it to some extent for their own sakes, in order to preserve the social fabric. The public knows that it cannot afford as a matter of dollars and cents, to be visited by such a scourge as yellow fever or cholera often has been. So when such a disaster is felt to be imminent, it is easy to secure attention and an appropriation for a spasmodic effort at cleanliness, for the removal of filth-pockets that have been poisoning the public for months and years unheeded. But in the absence of any immediate and personal peril it is not so easy to see that the mere destruction of lives, shocking as that is, is not the thing most to be dreaded; that the slow undermining of the health of a portion of the community by foul air and water and soil and improper food, the development of ill-regulated appetites fostered at least by the same things, the loss of self-respect and of hopefulness which are certainly attendant evils, that all these are things more terrible to those who immediately suffer, and in the end to society itself, than loss of life by war or sudden pestilence.
CLIMATOLOGICAL OBSERVATIONS
AND RECORDS.

Meteorology and Climatology have so prominently taken their place among practical studies that there is no longer need to make special argument for the collection of facts as to them. But like any voluntary service requiring time and skill, there are many practical difficulties in the way of securing complete returns. As an evidence of this, no one of the colleges of the State has kept a record at all complete, and dependence has had to be placed upon the careful citizen who, either from leisure or taste, chooses to act as clerk of the weather.

As the relation of the work of this Bureau to these records is technical, and only for the purpose of studying the effect of climatological conditions on the local health, we selected stations and observers, both in reference to certain positions of latitude and longitude, to relations of water-site and to the geological divisions which the State admits.

The addition of observations at Newton, and the securement of the aid of former or new observers at various chosen points, afforded the desired comparisons. Owing to some change in the stations in the signal service, we are not able to give as fully as usual the records at Barnegat and Cape May. Observers for the year have been:

Newton—Miss E. Foster.
Paterson—Wm. Fergason.
Newark—F. W. Ricord.
New Brunswic—P. Vanderbilt Spader.
Beverly—C. F. Richardson.
Sandy Hook—U. S. Signal Service.
Vineland—C. H. Adams, M.D.
Barnegat—U. S. Signal Service.
Cape May—U. S. Signal Service.
As the chief signal officer of the army has recently organized a State Weather Service for this State, and started a monthly paper known as the *N. J. Weather Chronicle*, we hope hereafter to have a record which will give all those details which will aid in yearly and still more in quinquennial comparisons.

DEPRESSING WEATHER, AND SOME OF THE CAUSES WHY WE ARE AFFECTED BY THE WEATHER, OR WHY CHANGE OF CLIMATE IS SOMETIMES ADVANTAGEOUS.

Weather has so much to be taken into account in relation to health that it is well for us to recognize some of the effects which it may have on health and on disease. While we cannot change the weather, we have great powers of adaptation thereto, and it is in the wise exercise of our relations to it that we receive many benefits and avoid many evils. A recent writer thus briefly outlines the subject:

“There are manifestly three particulars of the general effect of depressing weather that may be usefully studied apart. Thus: The effect produced by external conditions on the temperature of the body, at the surface at least; the effect on the blood-pressure generally and the air-pressure in the lungs; and the effect on the nerve-state, with the secondary influences exerted on or apparent in the tone of the muscular system. It is, of course, impossible to go into these matters at all in detail. Suffice it to make the following observations by way of suggestion: If the surroundings be such as to abstract heat without at the same time stimulating the organism to a greater or quicker ‘evolution of caloric’—to use an obsolete but convenient expression—there must needs be a gradual lowering of the vital heat on which, as we know, the energy depends. Although it would not be accurate to assert that the convertibility—for convenience of expression—of the terms heat and force in relation to the organism implies that these two forms of motion are actually correlative, it is nevertheless a fact, that where there is any defect of bodily heat by reason of deficient production, there is sure to be ‘depression’ as a consequence. As a matter of experience, we know the difference from feeling cold as a healthy man may feel it in bright weather without the least loss of energy, but rather a quickening and enlivening of the animal spirits; and ‘feeling cold,’ as it is felt when the life seems to be chilled and the heart sinks with oppression and misery, the very ‘mind’ and ‘senses’ being, as it were, numbed. This subjective difference between the two states is due to the deficiency of bodily heat resulting from different causes: on the one hand, rapid abstraction by the surroundings with stimulation, as on a bright cold day; and, on the other hand,
METEOROLOGICAL SUMMARY OF VARIOUS STATIONS FROM JULY 1ST, 1885, TO JULY 1ST, 1886.

STATION, DENNIS LIBRARY, NEWTON, N. J.

Latitude, 41° 2' 45" N.; Longitude, 2° 19' 48" E. Height of Barometer Gistern above Sea Level, 630 feet.

Observer, Miss E. Foster.

<table>
<thead>
<tr>
<th>BAROMETER, Reduced to 32°.</th>
<th>THERMOMETER.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.466</td>
</tr>
<tr>
<td>July</td>
<td>29.475</td>
</tr>
<tr>
<td>August</td>
<td>29.406</td>
</tr>
<tr>
<td>September</td>
<td>29.473</td>
</tr>
<tr>
<td>October</td>
<td>29.458</td>
</tr>
<tr>
<td>November</td>
<td>29.464</td>
</tr>
<tr>
<td>December</td>
<td>29.506</td>
</tr>
<tr>
<td>For the year</td>
<td>29.503</td>
</tr>
</tbody>
</table>

*Including melted snow.

Remarks - July, 1885—Marked for its intense and prolonged heat. From the 10th to the 20th, the mean temperature was 84.80. Thunder storms frequent. There was delightful dryness of atmosphere, the weight of vapor from noon till midnight being reduced to a minimum. Rain on sixteen days to the amount of 8.99 inches. This great excess is due to the heavy rain of the 4th. In the three and one-half hours preceding midnight, the rain-fall was 6.43 inches, nearly three-fourths of the total monthly fall. There is no record of such rain-fall in Newton since the cloud-burst, which occurred in May, 1876. Collars were flooded, even in the highest parts of the town. The level of ground-water was three feet from the surface. Immediately following this, chasms opened, duney and circular head trenches presented. Three cases of typhoid fever (one fatal) bronchitis was prevalent, and there was one death from laryngitis. The summer rain-fall was 2.06 inches greater than in 1884. September—Temperature was 2.06 below the average. Rain-fall the least for any corresponding month on our records. Exceedingly dry, but no suffering from drought, the rain-fall of August having saturated the ground to a high level. From the 10th to the close of the month, relative humidity was low. Dyserter and several cases of typhoid fever developed at the beginning of the month. Remarkably free of sickness after the 10th. October—Temperature was genial and uniform. Frost first on the 7th. Fogs were frequent. Rain-fall nearly an inch above the average. One death from diphtheria. November had raw, chill atmosphere. Temperature was 1.49° above the mean. The water-fall was two and a half inches in excess of the average. Whooping-cough, measles, chicken-pox and rheumatism prevailed.

Autumn, 1886—Mean temperature 1.35° lower than that of 1884. Rain-fall was 1.05 inches in excess. December—The month was free from the intensities at or below zero, by which our warmest Decembers have been characterized. Mean temperature was 2.97° above the average. There was an absence of snow on the ground, and an unusually large number of rainless days. The year closed with no frost in the ground. On the 13th, following a very rapid fall in the barometer, several persons had attacks of vomiting and purging. The level of ground-water was high. January, 1886, falls below the average temperature 1.6°. No frost in the ground at the beginning of the month, and temperature much above the normal. After the 4th there were marked cold periods lasting 5 to 15 days, which, for intense and prolonged frigidity, have not been exceeded in former years. First heavy snow storm of winter came upon the 9th, and was accompanied with high wind, causing severe drifts. On the morning of the storm, the barometer indicated 29.902 inches, the lowest reading on record here, and having made the remarkable fall of 1.12 inches since the previous evening. Tonsillitis and influenza prevailed. February was sickle and delusive. The 5th, with an average temperature of 47°, was the coldest day of winter. The continuous north-westerly gale from the 26th to the 28th, with the temperature between 5 and 22°, was very trying to the human organs. The daily range was wide and normal. There were cases of scarlatina, tonsillitis and pneumonia during the latter part of the month. Winter, 1886-6.—Temperature 2.06° above the mean of 1884-5. Rain-fall 3.23 inches less, and depth of snow 21 inches less than in 1884-5. March—Temperature 1.49° above the normal. The intense cold of the first days of the month was made more unendurable by the north-westerly gale, which did not subside until after the 6th, having lasted eight days. Scarlatina and tonsillitis prevalent. April—Dry and warm, mean temperature being 5.92° above the average. Collars were flooded from the heavy rain of the 5th. Level of ground-water, two feet from the surface. Several cases of diarrhoea followed rapid fall in barometer on the 8th and 9th. May—Rain-fall 3.36 inches above the average. Collars flooded on the 7th and 8th. Spring, 1886—Mean temperature 8.10° higher than in 1885. The rain-fall exceeds that of 1886 by 0.99 inches. June—Temperature was uniform, though 1.36° below the average. Daily range was wide and very equable.
CLIMATOLOGICAL OBSERVATIONS.

STATION, NEW BRUNSWICK, N. J.
Latitude, 40° 29' N.; Longitude, 74° 26' W., or 2° 37' E. Height, 115 feet.

Observer, P. Vanderbilt Spader.

<table>
<thead>
<tr>
<th>BAROMETER</th>
<th>THERMOMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced to 32°</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1855</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>32.00</td>
</tr>
<tr>
<td>August</td>
<td>32.50</td>
</tr>
<tr>
<td>September</td>
<td>33.00</td>
</tr>
<tr>
<td>October</td>
<td>33.50</td>
</tr>
<tr>
<td>November</td>
<td>34.00</td>
</tr>
<tr>
<td>December</td>
<td>34.50</td>
</tr>
<tr>
<td>1856</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>35.00</td>
</tr>
<tr>
<td>February</td>
<td>35.50</td>
</tr>
<tr>
<td>March</td>
<td>36.00</td>
</tr>
<tr>
<td>April</td>
<td>36.50</td>
</tr>
<tr>
<td>May</td>
<td>37.00</td>
</tr>
<tr>
<td>June</td>
<td>37.50</td>
</tr>
</tbody>
</table>

For the year: 52.45; 14; 104.

Including melted snow.

ANNUAL SUMMARY OF OBSERVATIONS AT BEVERLY, N. J., FOR THE YEAR ENDING JUNE 30th, 1886.

Sent by C. F. Richardson.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>30.15</td>
<td>28.90</td>
<td>30.00</td>
<td>28.60</td>
<td>73.00</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Including melted snow.

Remarks:
- Partially cloudy days are here counted as cloudy.
- * denotes frost of any kind.
REPORT ON VITAL STATISTICS:

STATION, VINELAND, N. J.
Latitude, 38° 29' N.; Longitude, 75° 1' W. Height of Barometer Cistern above Sea Level, 105 feet.
Observer, O. H. Adams, M.D.

<table>
<thead>
<tr>
<th>BAROMETER</th>
<th>THERMOMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced to 32°</td>
<td>Max.</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>July</td>
<td>30.156</td>
</tr>
<tr>
<td>August</td>
<td>30.069</td>
</tr>
<tr>
<td>September</td>
<td>30.322</td>
</tr>
<tr>
<td>October</td>
<td>30.180</td>
</tr>
<tr>
<td>November</td>
<td>30.177</td>
</tr>
<tr>
<td>December</td>
<td>30.322</td>
</tr>
</tbody>
</table>

1855.
January: 30.500 29.571 29.571 60.0 -2 70.76 74.58 S.W., N.E. 4.270 1 12
February: 30.504 29.777 29.912| 60.0 10 30.956 65.42 S.W. 3.998 3 7 10
March: 30.167 29.722 29.722 65.0 15 45.41 73.23 S.W. 3.996 9 9
April: 30.313 29.921 29.984| 60.0 22 55.90 70.68 N.E. 2.517 1 6
May: 30.155 29.722 29.953 60.0 35 42.50 74.50 N.E., S.W. 4.548 16 12
June: 30.456 29.722 29.896| 60.0 25 76.03 74.81 N.E., S.W. 2.841 8 6

For the year: 30.267 29.533 29.853| 100.5 10 52.39 73.09 S.W. 45.994| 5 102 102

* Including melted snow.

CLIMATOLOGICAL OBSERVATIONS.

STATION, BARNEGAT CITY, N. J.
Latitude, 39° 46' N.; Longitude, 74° 6' E. Height of Barometer Cistern above Sea Level, 22 feet.
Observer, U. S. Signal Service.

<table>
<thead>
<tr>
<th>BAROMETER</th>
<th>THERMOMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced to 32°</td>
<td>Max.</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>July</td>
<td>30.013</td>
</tr>
<tr>
<td>August</td>
<td>30.280</td>
</tr>
<tr>
<td>September</td>
<td>30.399</td>
</tr>
<tr>
<td>October</td>
<td>30.020</td>
</tr>
<tr>
<td>November</td>
<td>30.293</td>
</tr>
<tr>
<td>December</td>
<td>30.013</td>
</tr>
</tbody>
</table>

For the year: 30.165 29.625 29.898| 102.9 10 52.39 73.09 S.W. 45.994| 5 102 102

* Including melted snow.
Remarks.—Station closed December 21st, 1855.

STATION, CAPE MAY, N. J.
Latitude, 38° 56' N.; Longitude, 74° 55' W. Height of Barometer Cistern above Sea Level, 27 feet.
Observer, U. S. Signal Service.

<table>
<thead>
<tr>
<th>BAROMETER</th>
<th>THERMOMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced to 32°</td>
<td>Max.</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>July</td>
<td>30.139</td>
</tr>
<tr>
<td>August</td>
<td>30.346</td>
</tr>
<tr>
<td>September</td>
<td>30.339</td>
</tr>
<tr>
<td>October</td>
<td>30.329</td>
</tr>
</tbody>
</table>

For the year: 30.165 29.625 29.898| 102.9 10 52.39 73.09 S.W. 45.994| 5 102 102

* Including melted snow.
Remarks.—Station closed October 21st, 1855.
NUMBER OF MARRIAGES, BIRTHS AND DEATHS, BY TOWNSHIPS.

FOR THE YEAR ENDING JUNE 30, 1886.

ATLANTIC COUNTY.

<table>
<thead>
<tr>
<th>Township</th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absecon</td>
<td>9</td>
<td>13</td>
<td>.5</td>
</tr>
<tr>
<td>Atlantic City</td>
<td>99</td>
<td>230</td>
<td>167</td>
</tr>
<tr>
<td>Buena Vista</td>
<td>15</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Egg Harbor City</td>
<td>29</td>
<td>41</td>
<td>29</td>
</tr>
<tr>
<td>Egg Harbor Township</td>
<td>26</td>
<td>81</td>
<td>56</td>
</tr>
<tr>
<td>Galloway</td>
<td>4</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>Hamilton</td>
<td>17</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Hammondoon</td>
<td>16</td>
<td>55</td>
<td>27</td>
</tr>
<tr>
<td>Mullica</td>
<td>4</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Weymouth</td>
<td>3</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td>495</td>
<td>371</td>
</tr>
</tbody>
</table>

BERGEN COUNTY.

<table>
<thead>
<tr>
<th>Township</th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englewood</td>
<td>20</td>
<td>54</td>
<td>72</td>
</tr>
<tr>
<td>Franklin</td>
<td>21</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>Harrington</td>
<td>9</td>
<td>48</td>
<td>23</td>
</tr>
<tr>
<td>Hobokus</td>
<td>19</td>
<td>58</td>
<td>38</td>
</tr>
<tr>
<td>Led</td>
<td>82</td>
<td>83</td>
<td>72</td>
</tr>
<tr>
<td>Midland</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>New Barbadoes</td>
<td>40</td>
<td>101</td>
<td>48</td>
</tr>
<tr>
<td>Orvil</td>
<td>24</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>Passaic</td>
<td>24</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>Ridgefield</td>
<td>19</td>
<td>77</td>
<td>53</td>
</tr>
<tr>
<td>Ridgewood</td>
<td>11</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Saddle River</td>
<td>7</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Union</td>
<td>22</td>
<td>71</td>
<td>62</td>
</tr>
<tr>
<td>Washington</td>
<td>10</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>238</td>
<td>702</td>
<td>387</td>
</tr>
</tbody>
</table>

*New Township.
REPORT ON VITAL STATISTICS.

BURLINGTON COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bas River</td>
<td>8</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Beverly</td>
<td>22</td>
<td>19</td>
<td>58</td>
</tr>
<tr>
<td>Bordentown</td>
<td>29</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>Burlington</td>
<td>83</td>
<td>146</td>
<td>166</td>
</tr>
<tr>
<td>Chester</td>
<td>38</td>
<td>56</td>
<td>35</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>14</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>Cinnaminson</td>
<td>18</td>
<td>64</td>
<td>18</td>
</tr>
<tr>
<td>Delran</td>
<td>11</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Eastampton</td>
<td>12</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Evesham</td>
<td>18</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>Florence</td>
<td>4</td>
<td>41</td>
<td>32</td>
</tr>
<tr>
<td>Little Egg Harbor</td>
<td>11</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>Lambert</td>
<td>1</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Mansfield</td>
<td>10</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>Medford</td>
<td>11</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Mt. Laurel</td>
<td>2</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>New Hanover</td>
<td>15</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>Northampton</td>
<td>60</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>Pemberton</td>
<td>13</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>Randolph</td>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Shamong</td>
<td>1</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Southport</td>
<td>4</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td>Springfield</td>
<td>6</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Washington</td>
<td>7</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Westampton</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Willingboro</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Woodland</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>973</td>
<td>1086</td>
</tr>
</tbody>
</table>

CAMDEN COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camden City</td>
<td>2,688</td>
<td>875</td>
<td>1,019</td>
</tr>
<tr>
<td>Centre</td>
<td>6</td>
<td>48</td>
<td>33</td>
</tr>
<tr>
<td>Delaware</td>
<td>11</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Gloucester City</td>
<td>43</td>
<td>68</td>
<td>99</td>
</tr>
<tr>
<td>Gloucester</td>
<td>39</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>Haddon</td>
<td>25</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Stockton</td>
<td>22</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Waterford</td>
<td>10</td>
<td>67</td>
<td>29</td>
</tr>
<tr>
<td>Winslow</td>
<td>10</td>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2,799</td>
<td>1,309</td>
<td>1,414</td>
</tr>
</tbody>
</table>

*2,307 non-resident marriages.

CAPE MAY COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape May City</td>
<td>38</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>Dennis</td>
<td>14</td>
<td>42</td>
<td>26</td>
</tr>
<tr>
<td>Lower</td>
<td>12</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>Middle</td>
<td>17</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>Upper</td>
<td>11</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>197</td>
<td>150</td>
</tr>
</tbody>
</table>

MARRIAGES, BIRTHS AND DEATHS.

CUMBERLAND COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridgetown</td>
<td>25</td>
<td>27</td>
<td>120</td>
</tr>
<tr>
<td>Commercial</td>
<td>6</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Deerfield</td>
<td>13</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>Downe</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Fords</td>
<td>6</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Greenwich</td>
<td>6</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Hopewell</td>
<td>9</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>Lands</td>
<td>71</td>
<td>159</td>
<td>140</td>
</tr>
<tr>
<td>Lawrence</td>
<td>20</td>
<td>68</td>
<td>28</td>
</tr>
<tr>
<td>Maurice River</td>
<td>16</td>
<td>39</td>
<td>60</td>
</tr>
<tr>
<td>Millville</td>
<td>37</td>
<td>291</td>
<td>159</td>
</tr>
<tr>
<td>Stoe Creek</td>
<td>5</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>573</td>
<td>1,039</td>
<td>585</td>
</tr>
</tbody>
</table>

ESSEX COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belleville</td>
<td>35</td>
<td>78</td>
<td>49</td>
</tr>
<tr>
<td>Bloomfield</td>
<td>42</td>
<td>162</td>
<td>69</td>
</tr>
<tr>
<td>Caldwell</td>
<td>23</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Clinton</td>
<td>20</td>
<td>47</td>
<td>32</td>
</tr>
<tr>
<td>East Orange</td>
<td>53</td>
<td>198</td>
<td>128</td>
</tr>
<tr>
<td>Franklin</td>
<td>10</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Livingston</td>
<td>12</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Millburn</td>
<td>15</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Montclair</td>
<td>22</td>
<td>106</td>
<td>83</td>
</tr>
<tr>
<td>Newark</td>
<td>1,416</td>
<td>4,531</td>
<td>3,665</td>
</tr>
<tr>
<td>Orange</td>
<td>149</td>
<td>416</td>
<td>394</td>
</tr>
<tr>
<td>South Orange</td>
<td>34</td>
<td>61</td>
<td>39</td>
</tr>
<tr>
<td>West Orange</td>
<td>12</td>
<td>65</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1,854</td>
<td>5,565</td>
<td>4,380</td>
</tr>
</tbody>
</table>

GLOUCESTER COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton</td>
<td>21</td>
<td>62</td>
<td>37</td>
</tr>
<tr>
<td>Deptford</td>
<td>4</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>East Greenwich</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Franklin</td>
<td>9</td>
<td>63</td>
<td>38</td>
</tr>
<tr>
<td>Glassboro</td>
<td>26</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>Greenwich</td>
<td>7</td>
<td>47</td>
<td>26</td>
</tr>
<tr>
<td>Harrison</td>
<td>7</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Logan</td>
<td>37</td>
<td>62</td>
<td>46</td>
</tr>
<tr>
<td>Marshall</td>
<td>31</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Monroe</td>
<td>11</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>South Harrison</td>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Washington</td>
<td>5</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>West Deptford</td>
<td>2</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Woolwich</td>
<td>43</td>
<td>85</td>
<td>57</td>
</tr>
<tr>
<td>Woolwich</td>
<td>22</td>
<td>648</td>
<td>461</td>
</tr>
</tbody>
</table>
REPORT ON VITAL STATISTICS.

HUDSON COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berene</td>
<td>81</td>
<td>276</td>
<td>311</td>
</tr>
<tr>
<td>Guttenberg</td>
<td>6</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Harrison</td>
<td>19</td>
<td>297</td>
<td>177</td>
</tr>
<tr>
<td>Hoboken</td>
<td>475</td>
<td>929</td>
<td>925</td>
</tr>
<tr>
<td>Jersey City</td>
<td>100</td>
<td>1,557</td>
<td>1,658</td>
</tr>
<tr>
<td>Kearny</td>
<td>2</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>North Bergen</td>
<td>9</td>
<td>51</td>
<td>225</td>
</tr>
<tr>
<td>Town of Union</td>
<td>114</td>
<td>218</td>
<td>252</td>
</tr>
<tr>
<td>Union</td>
<td>12</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>Weehawken</td>
<td>12</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>West Hoboken</td>
<td>62</td>
<td>220</td>
<td>196</td>
</tr>
<tr>
<td>Total</td>
<td>1,716</td>
<td>4,323</td>
<td>5,549</td>
</tr>
</tbody>
</table>

HUNTERDON COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandria</td>
<td>9</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>Bethlehem</td>
<td>13</td>
<td>49</td>
<td>33</td>
</tr>
<tr>
<td>Clinton</td>
<td>22</td>
<td>61</td>
<td>41</td>
</tr>
<tr>
<td>Delaware</td>
<td>12</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>East Amwell</td>
<td>19</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>Franklin</td>
<td>15</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>Frenchtown</td>
<td>12</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>High Bridge</td>
<td>10</td>
<td>47</td>
<td>19</td>
</tr>
<tr>
<td>Holland</td>
<td>13</td>
<td>46</td>
<td>21</td>
</tr>
<tr>
<td>Kingwood</td>
<td>10</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>Lambertville</td>
<td>10</td>
<td>47</td>
<td>21</td>
</tr>
<tr>
<td>Lebanon</td>
<td>21</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>Raritan</td>
<td>11</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>Readington</td>
<td>19</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>Tewksbury</td>
<td>12</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Union</td>
<td>15</td>
<td>49</td>
<td>21</td>
</tr>
<tr>
<td>West Amwell</td>
<td>8</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>314</td>
<td>629</td>
<td>496</td>
</tr>
</tbody>
</table>

*34 non-resident marriages.

MERCER COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambersburg</td>
<td>82</td>
<td>121</td>
<td>171</td>
</tr>
<tr>
<td>East Windsor</td>
<td>24</td>
<td>81</td>
<td>46</td>
</tr>
<tr>
<td>Ewing</td>
<td>5</td>
<td>11</td>
<td>74</td>
</tr>
<tr>
<td>Hamilton</td>
<td>29</td>
<td>83</td>
<td>42</td>
</tr>
<tr>
<td>Hopewell</td>
<td>28</td>
<td>69</td>
<td>54</td>
</tr>
<tr>
<td>Lawrence</td>
<td>4</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Millburn</td>
<td>10</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>Princeton</td>
<td>22</td>
<td>77</td>
<td>60</td>
</tr>
<tr>
<td>Trenton</td>
<td>483</td>
<td>488</td>
<td>520</td>
</tr>
<tr>
<td>Washington</td>
<td>6</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>West Windsor</td>
<td>11</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>4,700</td>
<td>916</td>
<td>1,071</td>
</tr>
</tbody>
</table>

*71 non-resident marriages.

MARRIAGES, BIRTHS AND DEATHS.

MIDDLESEX COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranbury</td>
<td>19</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>East Brunswick</td>
<td>34</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>Madison</td>
<td>18</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>Monroe</td>
<td>20</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>108</td>
<td>83</td>
<td>248</td>
</tr>
<tr>
<td>North Brunswick</td>
<td>45</td>
<td>205</td>
<td>121</td>
</tr>
<tr>
<td>Perth Amboy</td>
<td>18</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td>Piscataway</td>
<td>26</td>
<td>101</td>
<td>54</td>
</tr>
<tr>
<td>Rahway</td>
<td>7</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>Sayreville</td>
<td>19</td>
<td>82</td>
<td>55</td>
</tr>
<tr>
<td>South Amboy</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>South Brunswick</td>
<td>158</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Woodbridge</td>
<td>19</td>
<td>82</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>563</td>
<td>1,114</td>
<td>963</td>
</tr>
</tbody>
</table>

MONMOUTH COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>7</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Bayonne</td>
<td>20</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>Baytown</td>
<td>31</td>
<td>85</td>
<td>22</td>
</tr>
<tr>
<td>Belford</td>
<td>7</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Bordentown</td>
<td>30</td>
<td>68</td>
<td>23</td>
</tr>
<tr>
<td>Branchburg</td>
<td>60</td>
<td>101</td>
<td>60</td>
</tr>
<tr>
<td>Marmon</td>
<td>21</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>Marlboro</td>
<td>4</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Middletown</td>
<td>23</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Montclair</td>
<td>31</td>
<td>98</td>
<td>87</td>
</tr>
<tr>
<td>Milltown</td>
<td>8</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Navesink</td>
<td>65</td>
<td>120</td>
<td>73</td>
</tr>
<tr>
<td>Ocean</td>
<td>15</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>Peapack</td>
<td>50</td>
<td>104</td>
<td>73</td>
</tr>
<tr>
<td>Parsippany</td>
<td>54</td>
<td>143</td>
<td>74</td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>53</td>
<td>133</td>
<td>76</td>
</tr>
<tr>
<td>Upper Freehold</td>
<td>39</td>
<td>70</td>
<td>44</td>
</tr>
<tr>
<td>Wall</td>
<td>35</td>
<td>115</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>464</td>
<td>1,180</td>
<td>903</td>
</tr>
</tbody>
</table>

MORRIS COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boonton</td>
<td>22</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Chatham</td>
<td>39</td>
<td>69</td>
<td>67</td>
</tr>
<tr>
<td>Chatham</td>
<td>15</td>
<td>91</td>
<td>23</td>
</tr>
<tr>
<td>Hanover</td>
<td>15</td>
<td>45</td>
<td>117</td>
</tr>
<tr>
<td>Jefferson</td>
<td>12</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>Jefferson</td>
<td>6</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Montville</td>
<td>54</td>
<td>164</td>
<td>120</td>
</tr>
<tr>
<td>Morrisville</td>
<td>14</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>Mount Olive</td>
<td>6</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>Pequannock</td>
<td>21</td>
<td>49</td>
<td>31</td>
</tr>
<tr>
<td>Randolph</td>
<td>66</td>
<td>143</td>
<td>112</td>
</tr>
<tr>
<td>Bloomingdale</td>
<td>12</td>
<td>86</td>
<td>23</td>
</tr>
<tr>
<td>Boxford</td>
<td>12</td>
<td>85</td>
<td>38</td>
</tr>
<tr>
<td>Boxborough</td>
<td>12</td>
<td>55</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>312</td>
<td>847</td>
<td>727</td>
</tr>
</tbody>
</table>

‡71 non-resident marriages.
Ocean County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Brick</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>Clifton</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Eggertson</td>
<td>19</td>
<td>52</td>
</tr>
<tr>
<td>Little Falls</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Ocean</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Plummer</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Stafford</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Union</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Total: 120, 110, 220

Passaic County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquackanook</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>Little Falls</td>
<td>14</td>
<td>52</td>
</tr>
<tr>
<td>Manchester</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Passaic</td>
<td>53</td>
<td>216</td>
</tr>
<tr>
<td>Paterson</td>
<td>103</td>
<td>1,554</td>
</tr>
<tr>
<td>Pompton</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Wayne</td>
<td>23</td>
<td>73</td>
</tr>
<tr>
<td>West Milford</td>
<td>15</td>
<td>45</td>
</tr>
</tbody>
</table>

Total: 638, 1,362, 1,400

Salem County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloway</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Elsinboro</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Lower Alloway Creek</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Maysington</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Oldmans</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>Pilsengrove</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>Pittsgrove</td>
<td>13</td>
<td>44</td>
</tr>
<tr>
<td>Quinlan</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>Salem</td>
<td>53</td>
<td>129</td>
</tr>
<tr>
<td>Upper Penns Neck</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Upper Pitts Grove</td>
<td>7</td>
<td>23</td>
</tr>
</tbody>
</table>

Total: 167, 454, 389

Somerset County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedminster</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Bernards</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>Branchburg</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Bridgewater</td>
<td>23</td>
<td>107</td>
</tr>
<tr>
<td>Bridgewater</td>
<td>13</td>
<td>71</td>
</tr>
<tr>
<td>Hillsborough</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>Montgomery</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>North Plainfield</td>
<td>28</td>
<td>72</td>
</tr>
<tr>
<td>Warren</td>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>

Total: 181, 465, 422

Sussex County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andover</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Byram</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>Franklin</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Green</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Hardystown</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Lafayette</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Montague</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>Newton</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Sparta</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Stillwater</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Vernon</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Walpack</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Wantage</td>
<td>26</td>
<td>43</td>
</tr>
</tbody>
</table>

Total: 197, 351, 273

Union County

<table>
<thead>
<tr>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Cranford</td>
<td>240</td>
<td>862</td>
</tr>
<tr>
<td>Elizabeth</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>Fanwood</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>Linden</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>New Providence</td>
<td>64</td>
<td>122</td>
</tr>
<tr>
<td>Plainfield</td>
<td>44</td>
<td>103</td>
</tr>
<tr>
<td>Rahway</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Springfield</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Summit</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>Westfield</td>
<td>13</td>
<td>58</td>
</tr>
</tbody>
</table>

Total: 422, 1,518, 1,000
REPORT ON VITAL STATISTICS.

WARREN COUNTY.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allamuchy</td>
<td></td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Bevidere</td>
<td>35</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>Blairtown</td>
<td>6</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Franklin</td>
<td>5</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Frelinghuysen</td>
<td>10</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Greenwich</td>
<td>8</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>Hackensack</td>
<td>4</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Handwick</td>
<td>1</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>Harmony</td>
<td>6</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Hope</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Knowlton</td>
<td>41</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Lopatcong</td>
<td>2</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>Mansfield</td>
<td>8</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Oxford</td>
<td>32</td>
<td>134</td>
<td>21</td>
</tr>
<tr>
<td>Pawling</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Phillipsburg</td>
<td>30</td>
<td>279</td>
<td>116</td>
</tr>
<tr>
<td>Pohatcong</td>
<td>10</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Washington</td>
<td>43</td>
<td>81</td>
<td>44</td>
</tr>
</tbody>
</table>

*555 824 490

*265 non-resident marriages.

TOTALS OF MARRIAGES, BIRTHS AND DEATHS FOR ALL THE COUNTIES.

<table>
<thead>
<tr>
<th></th>
<th>M.</th>
<th>B.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>207</td>
<td>465</td>
<td>571</td>
</tr>
<tr>
<td>Bergen</td>
<td>293</td>
<td>802</td>
<td>297</td>
</tr>
<tr>
<td>Burlington</td>
<td>370</td>
<td>973</td>
<td>124</td>
</tr>
<tr>
<td>Camden</td>
<td>2,779</td>
<td>1,509</td>
<td>1,414</td>
</tr>
<tr>
<td>Cape May</td>
<td>82</td>
<td>187</td>
<td>150</td>
</tr>
<tr>
<td>Cumberland</td>
<td>373</td>
<td>1,069</td>
<td>233</td>
</tr>
<tr>
<td>Essex</td>
<td>1,824</td>
<td>5,562</td>
<td>5,330</td>
</tr>
<tr>
<td>Gloucester</td>
<td>292</td>
<td>643</td>
<td>461</td>
</tr>
<tr>
<td>Hudson</td>
<td>1,715</td>
<td>4,325</td>
<td>5,049</td>
</tr>
<tr>
<td>Hunterdon</td>
<td>314</td>
<td>629</td>
<td>488</td>
</tr>
<tr>
<td>Mercer</td>
<td>700</td>
<td>916</td>
<td>1,017</td>
</tr>
<tr>
<td>Middlesex</td>
<td>398</td>
<td>1,114</td>
<td>715</td>
</tr>
<tr>
<td>Monmouth</td>
<td>464</td>
<td>1,150</td>
<td>603</td>
</tr>
<tr>
<td>Morris</td>
<td>312</td>
<td>847</td>
<td>737</td>
</tr>
<tr>
<td>Ocean</td>
<td>1,061</td>
<td>1,062</td>
<td>1,409</td>
</tr>
<tr>
<td>Passaic</td>
<td>167</td>
<td>474</td>
<td>369</td>
</tr>
<tr>
<td>Salem</td>
<td>181</td>
<td>468</td>
<td>343</td>
</tr>
<tr>
<td>Somerset</td>
<td>197</td>
<td>251</td>
<td>278</td>
</tr>
<tr>
<td>Sussex</td>
<td>422</td>
<td>1,335</td>
<td>1,037</td>
</tr>
<tr>
<td>Union</td>
<td>565</td>
<td>824</td>
<td>490</td>
</tr>
</tbody>
</table>

*2,927 non-resident marriages.

RETURNS OF DEATHS FROM ALL CAUSES.
DEATHS AT ALL AGES.

<table>
<thead>
<tr>
<th>Country</th>
<th>Under one year</th>
<th>One to five</th>
<th>Five to twenty</th>
<th>Twenty to sixty</th>
<th>Over sixty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>93</td>
<td>49</td>
<td>58</td>
<td>54</td>
<td>73</td>
<td>249</td>
</tr>
<tr>
<td>Burlington</td>
<td>114</td>
<td>69</td>
<td>63</td>
<td>60</td>
<td>83</td>
<td>328</td>
</tr>
<tr>
<td>Camden</td>
<td>104</td>
<td>53</td>
<td>60</td>
<td>62</td>
<td>85</td>
<td>304</td>
</tr>
<tr>
<td>Cumberland</td>
<td>147</td>
<td>61</td>
<td>45</td>
<td>56</td>
<td>73</td>
<td>395</td>
</tr>
<tr>
<td>Essex</td>
<td>198</td>
<td>90</td>
<td>63</td>
<td>65</td>
<td>89</td>
<td>424</td>
</tr>
<tr>
<td>Hudson</td>
<td>152</td>
<td>72</td>
<td>47</td>
<td>54</td>
<td>70</td>
<td>359</td>
</tr>
<tr>
<td>Huntington</td>
<td>110</td>
<td>53</td>
<td>39</td>
<td>45</td>
<td>64</td>
<td>291</td>
</tr>
<tr>
<td>Middlesex</td>
<td>130</td>
<td>57</td>
<td>42</td>
<td>50</td>
<td>72</td>
<td>366</td>
</tr>
<tr>
<td>Monmouth</td>
<td>136</td>
<td>63</td>
<td>40</td>
<td>55</td>
<td>70</td>
<td>361</td>
</tr>
<tr>
<td>Morris</td>
<td>96</td>
<td>42</td>
<td>30</td>
<td>40</td>
<td>56</td>
<td>234</td>
</tr>
<tr>
<td>Orange</td>
<td>86</td>
<td>39</td>
<td>26</td>
<td>36</td>
<td>46</td>
<td>223</td>
</tr>
<tr>
<td>Passaic</td>
<td>126</td>
<td>59</td>
<td>35</td>
<td>43</td>
<td>58</td>
<td>305</td>
</tr>
<tr>
<td>Union</td>
<td>121</td>
<td>56</td>
<td>33</td>
<td>41</td>
<td>56</td>
<td>307</td>
</tr>
<tr>
<td>Warren</td>
<td>112</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>56</td>
<td>298</td>
</tr>
</tbody>
</table>

PRINCIPAL CAUSES OF DEATH.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile disease</td>
<td>3,760</td>
</tr>
<tr>
<td>Maternal disease</td>
<td>1,020</td>
</tr>
<tr>
<td>Deaf-mute</td>
<td>51</td>
</tr>
<tr>
<td>Blind</td>
<td>66</td>
</tr>
<tr>
<td>Deaf and dumb</td>
<td>34</td>
</tr>
<tr>
<td>Infirmity</td>
<td>72</td>
</tr>
<tr>
<td>Consumption—vent.</td>
<td>23</td>
</tr>
<tr>
<td>Consumption—misc.</td>
<td>8</td>
</tr>
<tr>
<td>Disease of parts of body</td>
<td>56</td>
</tr>
<tr>
<td>Disease of the heart</td>
<td>21</td>
</tr>
<tr>
<td>Disease of the skin</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>35</td>
</tr>
<tr>
<td>Diseases of joints</td>
<td>43</td>
</tr>
<tr>
<td>Diseases of the kidneys</td>
<td>30</td>
</tr>
<tr>
<td>Hemorrhages</td>
<td>73</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>6</td>
</tr>
<tr>
<td>Miscellaneous, etc.</td>
<td>49</td>
</tr>
<tr>
<td>Suicide</td>
<td>27</td>
</tr>
</tbody>
</table>

Note: Totals include the number of deaths registered in cities of the State of New Jersey, as compiled from the returns of the cities of the State of New Jersey, of over 5,000 population, for the year ending June 30th, 1886.
return of deaths from all causes and certain specified diseases, in the statistical divisions of the State of New Jersey, for the year ending June 30th, 1886.

<table>
<thead>
<tr>
<th>County</th>
<th>Deaths at all ages</th>
<th>Population of city or town</th>
<th>Density per 1000</th>
<th>Death rate per 1000</th>
<th>Total population of city or town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic County</td>
<td>22,258</td>
<td>60,916</td>
<td>36.32</td>
<td>10.50</td>
<td>325,000</td>
</tr>
</tbody>
</table>

deaths.

<table>
<thead>
<tr>
<th>County</th>
<th>Deaths at all ages</th>
<th>Population of city or town</th>
<th>Density per 1000</th>
<th>Death rate per 1000</th>
<th>Total population of city or town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergen County</td>
<td>22,258</td>
<td>60,916</td>
<td>36.32</td>
<td>10.50</td>
<td>325,000</td>
</tr>
</tbody>
</table>

* A new township, and in annual tables, with the adjacent town.
BURLINGTON COUNTY

Population: 75,539

<table>
<thead>
<tr>
<th>Statistical Divisions</th>
<th>DEATHS AT ALL AGES</th>
<th>PRINCIPAL CAUSES OF DEATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascom</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Bridgeton</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Burlington</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Clinton</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Delaware</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>East Hampton</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Evesham</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Florence</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Lumberston</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mansfield</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Northampton</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Pemberton</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Randolph</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>South Hampton</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Springfield</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Westampton</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Willingboro</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Woodland</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>171</td>
<td>89</td>
</tr>
</tbody>
</table>

GIBRALTAR COUNTY

Population: 70,665

<table>
<thead>
<tr>
<th>Statistical Divisions</th>
<th>DEATHS AT ALL AGES</th>
<th>PRINCIPAL CAUSES OF DEATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camden City</td>
<td>205</td>
<td>147</td>
</tr>
<tr>
<td>Centre</td>
<td>91</td>
<td>64</td>
</tr>
<tr>
<td>Delaware</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td>Gloucester City</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>Haddon</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Haddon</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Milltown</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Woodbridge</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>767</td>
<td>523</td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

DEATHS AT ALL AGES

<table>
<thead>
<tr>
<th>DEATHS AT ALL AGES</th>
<th>CAPE MAY COUNTY.</th>
<th>PRINCIPAL CAUSES OF DEATH.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POPULATION, 10,744.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistical Divisions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cape May City</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td></td>
</tr>
<tr>
<td>Under one year.</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>One to five.</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Five to twenty.</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Twenty to thirty.</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Over thirty.</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Total, including both sexes.</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td>1,829</td>
<td>1,326</td>
</tr>
<tr>
<td>Death-rate per 1,000.</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Typhoid fever.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Small-pox.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Scarlet fever.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Consumption.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Consumption.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhus.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measles.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whooping-cough.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coma and diphtheria.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encephalitis.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumption.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acute lung disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of heart and circulation.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary disease.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenitis and spinal.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory and infective diseases.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and certain specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

Essex County

Deaths at all Ages

<table>
<thead>
<tr>
<th>Under one year</th>
<th>One to five</th>
<th>Five to twenty</th>
<th>Twenty to sixty</th>
<th>Over sixty</th>
<th>Total, including under six</th>
<th>Population, census of 1880</th>
<th>Population, census of 1885</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belleville</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>16</td>
<td>48</td>
<td>3,243</td>
<td>1</td>
</tr>
<tr>
<td>Bloomfield</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>32</td>
<td>6,263</td>
<td>1</td>
</tr>
<tr>
<td>Caldwell</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Clinton</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>14</td>
<td>1,002</td>
<td>1</td>
</tr>
<tr>
<td>East Orange</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>Franklin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Livingston</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1,372</td>
<td>1</td>
</tr>
<tr>
<td>Millburn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,023</td>
<td>1</td>
</tr>
<tr>
<td>Montclair</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6,337</td>
<td>1</td>
</tr>
<tr>
<td>Newark</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>152,948</td>
<td>1</td>
</tr>
<tr>
<td>Orange</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>23,310</td>
<td>1</td>
</tr>
<tr>
<td>South Orange</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4,253</td>
<td>1</td>
</tr>
<tr>
<td>West Orange</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2,372</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>213,784</td>
<td>21</td>
</tr>
</tbody>
</table>

Principal Causes of Death

<table>
<thead>
<tr>
<th>Disease</th>
<th>Deaths per 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhoid fever</td>
<td>1</td>
</tr>
<tr>
<td>Small-pox</td>
<td>2</td>
</tr>
<tr>
<td>Measles</td>
<td>1</td>
</tr>
<tr>
<td>Whooping-cough</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>1</td>
</tr>
<tr>
<td>Consumption</td>
<td>1</td>
</tr>
<tr>
<td>Consumption</td>
<td>1</td>
</tr>
<tr>
<td>Puerperal</td>
<td>1</td>
</tr>
<tr>
<td>Accidents</td>
<td>1</td>
</tr>
</tbody>
</table>

Gloucester County

Deaths at all Ages

<table>
<thead>
<tr>
<th>Under one year</th>
<th>One to five</th>
<th>Five to twenty</th>
<th>Twenty to sixty</th>
<th>Over sixty</th>
<th>Total, including under six</th>
<th>Population, census of 1880</th>
<th>Population, census of 1885</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>37</td>
<td>2,399</td>
<td>1</td>
</tr>
<tr>
<td>Deptford</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>30</td>
<td>1,233</td>
<td>1</td>
</tr>
<tr>
<td>East Greenwich</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>1,233</td>
<td>1</td>
</tr>
<tr>
<td>Franklin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,302</td>
<td>1</td>
</tr>
<tr>
<td>Glassboro</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Greenwhich</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Harrison</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Logan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Manton</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Monroe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>South Harrison</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>West Deptford</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Woolwich</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,420</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>102</td>
<td>56</td>
<td>66</td>
<td>11</td>
<td>14</td>
<td>27,603</td>
<td>16</td>
</tr>
</tbody>
</table>

Principal Causes of Death

<table>
<thead>
<tr>
<th>Disease</th>
<th>Deaths per 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhoid fever</td>
<td>1</td>
</tr>
<tr>
<td>Small-pox</td>
<td>2</td>
</tr>
<tr>
<td>Measles</td>
<td>1</td>
</tr>
<tr>
<td>Whooping-cough</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>1</td>
</tr>
<tr>
<td>Consumption</td>
<td>1</td>
</tr>
<tr>
<td>Consumption</td>
<td>1</td>
</tr>
<tr>
<td>Puerperal</td>
<td>1</td>
</tr>
<tr>
<td>Accidents</td>
<td>1</td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

DEATHS AT ALL AGES

HUDSON COUNTY

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Bayonne.........</td>
</tr>
<tr>
<td>Guttenberg......</td>
</tr>
<tr>
<td>Hoboken.........</td>
</tr>
<tr>
<td>Jersey City......</td>
</tr>
<tr>
<td>Kearny..........</td>
</tr>
<tr>
<td>North Bergen....</td>
</tr>
<tr>
<td>Town of Union....</td>
</tr>
<tr>
<td>Union...........</td>
</tr>
<tr>
<td>West Hamboken...</td>
</tr>
<tr>
<td>Totals...........</td>
</tr>
</tbody>
</table>

PRINCIPAL CAUSES OF DEATH

DEATHS AT ALL AGES

HUNTERDON COUNTY

<table>
<thead>
<tr>
<th>Population, 37,420. Statistical Divisions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Alexandria......</td>
</tr>
<tr>
<td>Bridgewater.....</td>
</tr>
<tr>
<td>Delaware........</td>
</tr>
<tr>
<td>East Amwell.....</td>
</tr>
<tr>
<td>Flemington......</td>
</tr>
<tr>
<td>Flemington.......</td>
</tr>
<tr>
<td>Lehigh River....</td>
</tr>
<tr>
<td>Lebanon........</td>
</tr>
<tr>
<td>Ringwood........</td>
</tr>
<tr>
<td>South Amwell...</td>
</tr>
<tr>
<td>Bushkill........</td>
</tr>
<tr>
<td>Union...........</td>
</tr>
<tr>
<td>West Amwell.....</td>
</tr>
<tr>
<td>Totals...........</td>
</tr>
</tbody>
</table>

PRINCIPAL CAUSES OF DEATH
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

Middlesex County

<table>
<thead>
<tr>
<th>DEATHS AT ALL AGES</th>
<th>PRINCIPAL CAUSES OF DEATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under one year.</td>
<td></td>
</tr>
<tr>
<td>One to five.</td>
<td></td>
</tr>
<tr>
<td>Five to ten.</td>
<td></td>
</tr>
<tr>
<td>Ten to twenty.</td>
<td></td>
</tr>
<tr>
<td>Twenty to thirty.</td>
<td></td>
</tr>
<tr>
<td>Over thirty.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
<tr>
<td>Deaths per 1,000.</td>
<td></td>
</tr>
<tr>
<td>Remedial force, etc.</td>
<td></td>
</tr>
<tr>
<td>Total, including under five.</td>
<td></td>
</tr>
<tr>
<td>Population, census of 1880.</td>
<td></td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

DEATHS AT ALL AGES.

<table>
<thead>
<tr>
<th>MONMOUTH COUNTY.</th>
<th>Population, 62,226.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical Divisions.</td>
</tr>
<tr>
<td></td>
<td>DEATHS AT ALL AGES.</td>
</tr>
<tr>
<td></td>
<td>(Under one year.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic</td>
<td>3</td>
</tr>
<tr>
<td>Eatontown</td>
<td>8</td>
</tr>
<tr>
<td>Freehold</td>
<td>13</td>
</tr>
<tr>
<td>Holmsted</td>
<td>12</td>
</tr>
<tr>
<td>Howell</td>
<td>6</td>
</tr>
<tr>
<td>Long Branch</td>
<td>23</td>
</tr>
<tr>
<td>Manahawen</td>
<td>2</td>
</tr>
<tr>
<td>Marlboro</td>
<td>25</td>
</tr>
<tr>
<td>Middletown</td>
<td>2</td>
</tr>
<tr>
<td>Millstone</td>
<td>12</td>
</tr>
<tr>
<td>Neptune</td>
<td>11</td>
</tr>
<tr>
<td>Ocean</td>
<td>3</td>
</tr>
<tr>
<td>Harton</td>
<td>35</td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>6</td>
</tr>
<tr>
<td>Upper Freehold</td>
<td>9</td>
</tr>
<tr>
<td>Wall</td>
<td>11</td>
</tr>
<tr>
<td>Totals</td>
<td>289</td>
</tr>
</tbody>
</table>

PRINCIPAL CAUSES OF DEATH.

<table>
<thead>
<tr>
<th>MONMOUTH COUNTY.</th>
<th>Population, 62,226.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical Divisions.</td>
</tr>
<tr>
<td></td>
<td>DEATHS AT ALL AGES.</td>
</tr>
<tr>
<td></td>
<td>(Under one year.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic</td>
<td>3</td>
</tr>
<tr>
<td>Eatontown</td>
<td>8</td>
</tr>
<tr>
<td>Freehold</td>
<td>13</td>
</tr>
<tr>
<td>Holmsted</td>
<td>12</td>
</tr>
<tr>
<td>Howell</td>
<td>6</td>
</tr>
<tr>
<td>Long Branch</td>
<td>23</td>
</tr>
<tr>
<td>Manahawen</td>
<td>2</td>
</tr>
<tr>
<td>Marlboro</td>
<td>25</td>
</tr>
<tr>
<td>Middletown</td>
<td>2</td>
</tr>
<tr>
<td>Millstone</td>
<td>12</td>
</tr>
<tr>
<td>Neptune</td>
<td>11</td>
</tr>
<tr>
<td>Ocean</td>
<td>3</td>
</tr>
<tr>
<td>Harton</td>
<td>35</td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>6</td>
</tr>
<tr>
<td>Upper Freehold</td>
<td>9</td>
</tr>
<tr>
<td>Wall</td>
<td>11</td>
</tr>
<tr>
<td>Totals</td>
<td>289</td>
</tr>
</tbody>
</table>

DEATHS AT ALL AGES.

<table>
<thead>
<tr>
<th>MORRIS COUNTY.</th>
<th>Population, 55,675.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical Divisions.</td>
</tr>
<tr>
<td></td>
<td>DEATHS AT ALL AGES.</td>
</tr>
<tr>
<td></td>
<td>(Under one year.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Boonton</td>
<td>3</td>
</tr>
<tr>
<td>Chatham</td>
<td>12</td>
</tr>
<tr>
<td>Chester</td>
<td>2</td>
</tr>
<tr>
<td>Hanover</td>
<td>6</td>
</tr>
<tr>
<td>Jefferson</td>
<td>5</td>
</tr>
<tr>
<td>Mendham</td>
<td>7</td>
</tr>
<tr>
<td>Montville</td>
<td>5</td>
</tr>
<tr>
<td>Morris-town</td>
<td>16</td>
</tr>
<tr>
<td>Millstone</td>
<td>3</td>
</tr>
<tr>
<td>Peasook</td>
<td>1</td>
</tr>
<tr>
<td>Pequannock</td>
<td>6</td>
</tr>
<tr>
<td>Randolph</td>
<td>12</td>
</tr>
<tr>
<td>Rockaway</td>
<td>10</td>
</tr>
<tr>
<td>Roslyn</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td>130</td>
</tr>
</tbody>
</table>

PRINCIPAL CAUSES OF DEATH.

<table>
<thead>
<tr>
<th>MORRIS COUNTY.</th>
<th>Population, 55,675.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical Divisions.</td>
</tr>
<tr>
<td></td>
<td>DEATHS AT ALL AGES.</td>
</tr>
<tr>
<td></td>
<td>(Under one year.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Boonton</td>
<td>3</td>
</tr>
<tr>
<td>Chatham</td>
<td>12</td>
</tr>
<tr>
<td>Chester</td>
<td>2</td>
</tr>
<tr>
<td>Hanover</td>
<td>6</td>
</tr>
<tr>
<td>Jefferson</td>
<td>5</td>
</tr>
<tr>
<td>Mendham</td>
<td>7</td>
</tr>
<tr>
<td>Montville</td>
<td>5</td>
</tr>
<tr>
<td>Morris-town</td>
<td>16</td>
</tr>
<tr>
<td>Millstone</td>
<td>3</td>
</tr>
<tr>
<td>Peasook</td>
<td>1</td>
</tr>
<tr>
<td>Pequannock</td>
<td>6</td>
</tr>
<tr>
<td>Randolph</td>
<td>12</td>
</tr>
<tr>
<td>Rockaway</td>
<td>10</td>
</tr>
<tr>
<td>Roslyn</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td>130</td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

OCEAN COUNTY.
Population, 15,006.
Statistical Divisions.

<table>
<thead>
<tr>
<th>Township</th>
<th>Deaths at All Ages</th>
<th>Population, Excess of 500</th>
<th>Death-rate per 1000</th>
<th>Principal Causes of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg Harbor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumstead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stafford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PASSAIC COUNTY.
Statistical Divisions.

<table>
<thead>
<tr>
<th>Township</th>
<th>Deaths at All Ages</th>
<th>Population, Excess of 500</th>
<th>Death-rate per 1000</th>
<th>Principal Causes of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquackanock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Falls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passaic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paterson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pompton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Milford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

SALEM COUNTY

Population: 25,373

<table>
<thead>
<tr>
<th>Statistical Divisions</th>
<th>Deaths at All Ages</th>
<th>Principal Causes of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 1 year</td>
<td>One to Five</td>
</tr>
<tr>
<td>Alloway</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bishopsgate</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lower Alloways Creek</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lower Penna Neck</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Manningston</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Oldmans</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Pitnegrove</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Pittsgrove</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinton</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Salem</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>Upper Penna Neck</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Totals</td>
<td>92</td>
<td>59</td>
</tr>
</tbody>
</table>

SOMERSET COUNTY

Population: 27,425

<table>
<thead>
<tr>
<th>Statistical Divisions</th>
<th>Deaths at All Ages</th>
<th>Principal Causes of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 1 year</td>
<td>One to Five</td>
</tr>
<tr>
<td>Bedminster</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Bernards</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Branchburg</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Bridgewater</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Franklin</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Hildreth</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Montgomery</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>North Plainfield</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Warren</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>83</td>
<td>59</td>
</tr>
</tbody>
</table>
Return of Deaths from all Causes and Certain Specified Diseases, in the Statistical Divisions of the State of New Jersey, for the Year ending June 30th, 1886.

Sussex County

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Under five yrs.</th>
<th>Five to twenty</th>
<th>Twenty to sixty</th>
<th>Over sixty</th>
<th>Total, including under five</th>
<th>Population, census of 1880</th>
<th>Death-rate per 1,000</th>
<th>Remittent fever, etc.</th>
<th>Tuberculosis</th>
<th>Small pox</th>
<th>Measles</th>
<th>Whooping-cough</th>
<th>Diphtheria</th>
<th>Puerperal</th>
<th>Childbed fever</th>
<th>Pneumonia</th>
<th>Dropsy, and other diseases</th>
<th>Cancer</th>
<th>Acute rheumatism, etc.</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andover</td>
<td></td>
</tr>
<tr>
<td>Byram</td>
<td></td>
</tr>
<tr>
<td>Frankford</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Hampton</td>
<td></td>
</tr>
<tr>
<td>Hardyston</td>
<td></td>
</tr>
<tr>
<td>Lafayette</td>
<td></td>
</tr>
<tr>
<td>Montague</td>
<td></td>
</tr>
<tr>
<td>Newton</td>
<td></td>
</tr>
<tr>
<td>Sandyhook</td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td></td>
</tr>
<tr>
<td>Stillwater</td>
<td></td>
</tr>
<tr>
<td>Vernon</td>
<td></td>
</tr>
<tr>
<td>Wallpack</td>
<td></td>
</tr>
<tr>
<td>Wantage</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>35</td>
<td>43</td>
<td>26</td>
<td>78</td>
<td>144</td>
<td>273</td>
<td>22,401</td>
<td>12.19</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>20</td>
<td>96</td>
<td>27</td>
<td>44</td>
<td>4</td>
<td>7</td>
<td>21</td>
<td>14</td>
</tr>
</tbody>
</table>

Union County

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Under five yrs.</th>
<th>Five to twenty</th>
<th>Twenty to sixty</th>
<th>Over sixty</th>
<th>Total, including under five</th>
<th>Population, census of 1880</th>
<th>Death-rate per 1,000</th>
<th>Remittent fever, etc.</th>
<th>Tuberculosis</th>
<th>Small pox</th>
<th>Measles</th>
<th>Whooping-cough</th>
<th>Diphtheria</th>
<th>Puerperal</th>
<th>Childbed fever</th>
<th>Pneumonia</th>
<th>Dropsy, and other diseases</th>
<th>Cancer</th>
<th>Acute rheumatism, etc.</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark</td>
<td></td>
</tr>
<tr>
<td>Elizabeth</td>
<td></td>
</tr>
<tr>
<td>Fanwood</td>
<td></td>
</tr>
<tr>
<td>Lindon</td>
<td></td>
</tr>
<tr>
<td>New Providence</td>
<td></td>
</tr>
<tr>
<td>Plainfield</td>
<td></td>
</tr>
<tr>
<td>Rahway</td>
<td></td>
</tr>
<tr>
<td>Springfield</td>
<td></td>
</tr>
<tr>
<td>Summit</td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td></td>
</tr>
<tr>
<td>Westfield</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>26</td>
<td>13</td>
<td>23</td>
<td>28</td>
<td>58</td>
<td>138</td>
<td>61,200</td>
<td>16.66</td>
<td>22</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>89</td>
<td>23</td>
<td>39</td>
<td>7</td>
<td>3</td>
<td>93</td>
<td>51</td>
</tr>
</tbody>
</table>
SYNOPSIS OF VITAL RETURNS AND COMMENTS ON SPECIAL DISEASES.

The records for the statistical year ending June 30th, 1886, as shown by the tables of this report, give an aggregate of 12,351 marriages, 25,497 births, and 22,734 deaths, of which numbers, as to marriage at least, 2,600 belong to adjacent States.

The following outline presents the comparative numbers for several years:

Average for five years ending June 30th, 1883:
- Marriages: 8,539
- Births: 24,281
- Deaths: 21,981

Number in the year ending June 30th, 1884:
- Marriages: 8,968
- Births: 25,363
- Deaths: 21,716

In the year ending June 30th, 1885, to be reckoned on an increased population of 146,917:
- Marriages: 8,959
- Births: 24,077
- Deaths: 23,607

Year ending June 30th, 1886:
- Marriages: 12,351
- Births: 25,497
- Deaths: 22,734

Population by the census of 1885:
- Cities of over 5,000 inhabitants: 701,428
- Rest of State: 576,605
- Total: 1,278,033

(445)
REPORT ON VITAL STATISTICS.

We have already considered the significance of the marriage record in a former part of the report. The marriage-rate the last year was an increase. It is to be borne in mind that a marriage represents two persons. The defects in return of births, more especially in cities, while being gradually rendered less, is still such as to require us to use the figures approximately, and by comparisons of these and of localities and of other facts, to make estimates.

In England and Wales it has been found that the birth-rate is 35.4, and the death-rate 20.2 per 1,000 persons. In Sweden the birth-rate is 30.2, against a death-rate of 18.1. In the German Empire, birth-rate 39.3 and death-rate 26.1. Austria, 39.1 birth-rate, 29.6 death-rate. The official returns for the United States show an annual birth-rate of 36 per thousand, but the birth-rate is probably much larger.

The birth-rate of this State for the past year, not reckoning the 1,469 reported still-births, was 20 to 1,000.

It is important that assessors and city clerks and physicians cooperate more fully in securing the birth returns.

The number of births is shown to have a definite relation to the prosperity and the home-life of the people.

When the times are prosperous, the number of births is greater, as well as the number of children who live.

But there are many reasons besides imperfection of return why the birth-rate does not bear a due proportion to the marriage-rate or death-rate. The tendency to hotel and boarding life instead of housekeeping and home-keeping life, the almost nomadic tendency of many young men, the increase of divorces, the fashionable views as to the evils of large families, and the too many wrong methods of limiting fecundity—all have their share of influence. A native-born population is among the chiefest material resources of a free people. Those who are studying the political and social, no less than the moral aspects of society, as patriots, as lovers of national purity and perpetuity, are beginning to feel that it is high time we took account of our heritage, and of the real value of a sufficiency of home-born and well-reared human stock as the greatest element of national prosperity. Over-production in this line has not as yet crippled any of our resources. In this State, not to speak of this broad land, there is still abundant room for homes, for that kind of thrift where a family is being reared, and where all in due time unite in the practical service of self-support. It is not only the common law of all well-organized society and States that on an average every child pays its own way by the age of twenty-one, but statistics show that they often provide a surplus for the parents.

In a study of death and death-rates and the causes of death, the first great and striking fact is that so many children should die. There is no naturalness in child-death. But for its frequency it would have all the character of an anomaly. If any such mortality as we now experience among the young of mankind as a result of sickness, should seize upon the young of domestic animals it would excite wide-spread attention and alarm. It is true that some of these deaths are by diseases of inheritance, but a small proportion of deaths under the age of twenty occurs from constitutional diseases. Besides, many of the constitutional diseases are amenable to the treatment which hygiene, dietetic management and physical training can afford.

In the year ending June 30th, 1886, of the 22,734 deaths, 10,610 were under twenty years of age. Thus nearly one-half die in the process of growth and fail to reach maturity. There is nothing about growth to kill. There is naturally everything that renders it surprising that death should occur in this period at all, except by accident or bad management.

As we further note the diseases, we find that 5,442 occurred from what are regarded as preventable diseases, even not including consumption and the numerous lung and brain and nervous diseases from which so many children die by ill-management.

Again, in comparing country and city, we find that a population of 576,605 outside of cities of over 5,000 inhabitants lost 1,717 children from the preventable diseases, while a population of 701,428 in cities of over 5,000 lost 3,705. Had the outside population been lost at the same rate, 3,046 instead of 1,717 would have died. Even admitting that all amid the country population were unavoidable deaths, the cities give a surplus of 1,329 unnecessary deaths. But when we come to note that there are many considerable towns and villages all through the State not included in the larger cities, one-half of these deaths would fall as among city population and show still more that our basis of comparison is itself a very excessive death-rate. Had the outside county death-rate under twenty been on the basis of that of Cape, May and Hunterdon counties, 5,811 children under twenty would have died, instead of the 10,610 that did die. Here is a waste of substance and of life enormous in its proportions, and even in its
material bearing on the productive power and development of a State. All this, too, when the basis of comparison as made for Hunterdon and Cape May counties takes it for granted that the deaths from preventable diseases in those counties were not preventable.

Extending the view beyond children and all along through adult life, and taking consumption as an example, we find that 2,051 died of it in cities of over 5,000, and 1,154 in the rest of the State, and had the deaths outside of cities, from consumption, been in the same proportion as in the cities, there would have been 1,686 deaths instead of 1,154. Apply this to the comparison of various other diseases, and we see how much of the purely artificial there is in disease. Count the number of days and the sickness and the loss which all this represents, and how much it stands for of sickness and disability in those who are not killed at once or at all by the chief preventable diseases, and consider whether it will not pay for us to prevent diseases to a far greater extent than we are doing. Could we have a more significant indication of the great losses that are taking place from avoidable disease? What wonder that the medical sanitarians see that a good and efficient Board of Health is a life-saving station in every township and village, which, if it does half its duty, is yearly saving a larger quota of human beings than were ever exposed upon any one sea-coast. There is before us the accurate table of the death-rate of a city of Massachusetts, from 1870 to 1886, its population having in the meantime increased from 9,055 to over 15,000. From 1870 to 1878 its average death-rate was 17.59 per thousand, and from 1878 to 1886 15.61 per thousand. The percentage of deaths from the zymotic or preventable diseases was 26.21 up to 1878, inclusive. At that time a separate Board of Health was established. In the succeeding eight years the percentage fell to an average of 15.11.

SPECIAL DISEASES.

In the study of each special disease, and especially in the study of localities, physicians and Boards of Health are advised to make comparisons of the number of deaths for the series of years over which our tables now extend. The quinquennial tables, as contained in the report of 1883, give the first five years, and the record is continued in the reports of each succeeding year. It is only by reading the reports and comments of each year in connection that we can arrive at a just comparison of results.

SPECIAL DISEASES.

While we have thus far been delivered from Asiatic cholera, which has caused so large a mortality the past year in countries along the Mediterranean sea, we are to remember that commercial relations may at any time bring it to our shores and afford a center for its extension. More threatening still are recent dispatches from Buenos Ayres. The ship "Perseo," plying between Genoa and Buenos Ayres, brought the disease to Rosario, where the passengers and cargo were discharged. In the cholera hospital at Buenos Ayres there were in November 200 cases and 73 deaths. In Rosario, 300 miles from Buenos Ayres, in a population of 50,000, there are reported, under date of December 3d, from 35 to 50 deaths per day. We cannot afford in the least to abate our vigilance against this disease.

REMITTENT FEVER.

Although this shows a slight increase over the former year, being 243 instead of 209 for the year ending June 30th, 1885, and 240 for the year ending June 30th, 1884, yet it is much less than the former average of 344 for the preceding five years. The prevalence is most marked in Essex, Hudson and Union counties, which had respectively 34, 56 and 16 deaths from this cause, to June 30th, 1884; 38, 44 and 13, to 1885, and 48, 55 and 22, to 1886.

There can be no doubt that this is, to a large extent, a seasonable disease, which is sure to recur in more extended endemics unless there is thorough drainage of the soil. The arresting of water-springs and water-sheds to make ponds or lakes, and the various undrained excavations that are made in and about cities, are always a source of peril. Two hundred and forty-three deaths from remittent fever point to many cases of malarial sickness of a lighter kind. With the excellent provision made under our State laws, for the drainage of localities, public enterprise and private interest should combine, better to protect our citizens against this avoidable cause of disease. The success which has attended the Pequass Valley drainage scheme should be the encouragement to much additional effort in this direction.

TYPHOID FEVER.

The quinquennial table of 1878 showed an average of 564 deaths from this disease. The record for 1883–4 was 640; for 1884–5, 642,
REPORT ON VITAL STATISTICS.

SPECIAL DISEASES.

Our physicians, our school boards, our Health Boards, and the heads of families, are urged not to neglect vaccination. Circulars of direction as to procuring lymph, etc., are sent on receipt of postal.

SCARLET FEVER.

The five years' average of deaths from the disease, to June 30th, 1883, was 771. The number for the respective years since have been 547, 646, and this year 222. Of these 165 were in cities. It is probable that we shall again have this year some increase over this, but it is certain that there has been great gain in our knowledge of isolation and disinfection and in the treatment of this disease so as to save more and especially to prevent its spread. In addition to the use of disinfectants in the mouth and the oiling or other means of protecting the skin, it is recently claimed that the secretions of the scarlet fever need disinfection. As we know that the mucous membrane shares in the disease, it is quite probable that the epithelium may be a conveyance. So it is wise to disinfect the stools of scarlet fever patients. Sir James Paget has recently said that to the works of Jenner and Pasteur "Power and Klein have lately annexed their admirable discovery of the milk scarlatina."

MEASLES.

The average of deaths from measles for the five years ending June 30th, 1883, was 115. The record for 1883-4 was 189, it having been epidemic in Hudson and Passaic counties. For 1884-5 the deaths were 135. The number of deaths for the past year was 88. It is a disease in which the number of deaths stands for a very large number of cases, since it is not in general a fatal disease. Yet since it is often accompanied with bronchial or pneumatic inflammation, and leaves an impairment of lung tissue favorable to the development of tubercle, it is never a disease to be regarded lightly. During attack an equitable temperature is desirable, and after the active symptoms have subsided there must be protection from cold for a time and the use of flannel as a body covering. As it is a disease especially contagious, there needs to be guard against the contagion, and especially in the winter and spring, when the attacks are most severe. The mouth and nasal discharges from measles should be received in a
vessel having in it chloride of lime or some other disinfectant, and the mouth should be frequently rinsed with a mild disinfecting wash. Handkerchiefs used by the person should be put in hot water before removal from the room.

WHOOPING-COUGH.

Although this is generally looked upon as one of the mildest or least serious of the communicable diseases, the deaths from it are more numerous than from measles. The average for the five years ending June 30th, 1883, was 192; for 1883-4 the number was 116; for 1884-5, 181, and for 1885-6, 274. There was a large excess in Jersey City and Hudson county. It is a disease much more fatal in cities than in the country. There is good reason for guarding against it, especially in the winter and spring. It is generally caught directly from the breath or from the secretions or the dried dust thereof mingling with the air of the room. The spuita should always be disinfected. The use of anti-spasmodics and of other medicines in the early stages does much to mitigate the severity of the disease.

DIPHTHERIA AND CROUP.

In the Secretary's report especial consideration is given to this disease, and some facts recorded of importance to all observers. The physicians of the State are asked to give it closer observation with reference to the views therein suggested. We believe that by earnest and continued effort on the part of Health Boards and physicians we shall be able to diminish the frequency and mitigate the severity of this disease. The average of deaths from it for the five years ending June 30th, 1883, was 1,144; for 1883-4 the number was 1,027; for 1884-5, 1,496, and for 1885-6, 1,303.

Contrary to the claim that has been made in England and in some of the States, the cities, as with other communicable diseases, show the larger proportion. Thus of the 1,496 deaths of last year, 1,061 were in cities of over 5,000 population, and for this year, of the 1,303 deaths, 985 were in cities. Still it is a disease alike to be dreaded in city and country. It seems to rise without an antecedent case more frequently than most other of the communicable diseases. Filthy conditions, foul water, dampness and the sudden exposure of cesspool or sewer material on damp, warm days have often seemed to cause

SPECIAL DISEASES.

the disease or to give it excessive mortality. It is the most formidable enemy of child-life. Yet in its earliest stages it is generally controlled by treatment. The most thorough cleansing and disinfection have much to do with limiting the disease. In diphtheria all the secretions should be carefully cared for.

ERYSIPelas.

The average of deaths therefrom for the five years ending June 30th, 1883, was 111. The record for 1883-4 was 80; for 1884-5, 75, and for 1885-6, 79. Under this we have not included pyaemia and septicemia, which are so often the result of accident. As erysipelas is now recognized as a specific and often communicable disease, and as it often bears suspicious relations to puerperal fever, it needs to be guarded with all the care needed for contagious diseases.

DIARRHEAL DISEASES.

This column embraces all deaths from bowel affections between the age of one month and twenty years. Those who die under one month are often put down with this as the cause of death. But as it is found that this is merely the incident among other causes that are developmental rather than functional or constitutional, they are not reckoned. The average for the five years ending June 30th, 1883, was 2,354. The number for 1883-4 was 2,462; for 1884-5, 2,845; for 1885-6, 2,664. Of the last number, 1,775 occurred in cities. The marked feature in the present year was an increase in the number of deaths from dysentery noticeable in various parts of the State. Although 109 deaths from this cause in persons under twenty years of age is not remarkable, yet it shows some tendency to this form of disease. We have before called attention to the relation of impure water to this disease. While all impure water tends to irritate the mucous membrane of the bowels, there is often in dysentery reason to believe that the irritation is of a specific character. Diarrhoea is generally caused by errors of diet or foul air. Attention is called to the article on Feeding of Infants in a previous part of this report. The effects of change of food and air, the great number of deaths in tenements and the crowded parts of cities, and the results of fresh-air funds are but so
REPORT ON VITAL STATISTICS.

many public notices that this class of infantile diseases is an artificial production, and the deaths the penalty for the transgression of animal laws.

CONSUMPTION.

This continues to be the great destroyer of life in the ages of manhood and womanhood. For the five years ending June 30th, 1883, the average of deaths from this cause was 3,015. The number in 1883–4 was 3,215; in 1884–5, 3,320, and in 1885–6, 3,205. The number for the last eight years is 24,817. The fact that 2,300 also died the past year of acute lung diseases makes the lung mortality very large. These latter also no doubt indicate many who recovered from an acute attack, but afterward succumbed to phthisis pulmonalis. Some of the reasons for the large number of deaths from consumption are not far to seek. Full as many are attributed to heredity as belong to it. If we examine the city mortality, and especially cities of some special trade like that of the hatters of Orange, we find that it is a very prevalent trade disease. It emphasizes the necessity for skilled inspection and oversight of all factory industries. The view that tuberculosis is conveyed by the milk of consumptive cows, has also seemed to receive some more proof during the past year. There is no disease to which prevention should be more thoroughly applied. There are members of families and there are individuals, who, by reason of their history, their build, their appearance, should never before thirty years of age be consigned to city life or any indoor occupation. Intelligent supervision and skilled examination beforehand would save very many from invalid lives or early graves.

School life is also believed to be accountable for much of the lack of lung vitality and full expansion which is so common a condition of our American youth. We have intermingled with it none of the military training to which so much of the European population is subjected. We must make up for the absence of this normal exercise by definite physical training of some kind. Also every school-room needs to be studied in its relation to the health of pupils. Education into robust life must be made a specialty as much as any other department of development. It is high time that scholastic and civic and governmental attention be more directed to a disease acquired oftener than it is inherited, and prevented oftener than it is cured.

SPECIAL DISEASES.

ACUTE LUNG DISEASES.

Of these pneumonia is the most formidable, although many bronchial and pleuritic affections add to the list. The average of deaths therefrom for the five years ending June 30th, 1883, was 2,373. The number for 1883–4 was 2,174; for 1884–5, 2,566, and for 1885–6, 2,300.

Our variable climate, the indoor life of so many of our people, the exposure of trades, the use of alcohol and carelessness as to the adjustment of one's self to changes of temperature, have much to do with this mortality. The keeping the mouth closed in sudden change of air, the using of the nostrils instead of the mouth for breathing purposes, the increase of flannel when outer garments are changed, the protection of the back of the lungs as well as the front, and the avoidance of the depression of vitality which foul air always causes, are among the precautions to be suggested.

BRAIN AND NERVOUS DISEASES OF CHILDREN.

The average of deaths from these, for the five years ending June 30th, 1883, was 1,722. The record for 1883–4 was 1,598; for 1884–5, 1,791, and for 1885–6, 1,774. Here, again, there is need of close study and observation in dealing with children in our schools. It is rather spasmodic over-pressure than continuous over-exertion. There is also much error in not early recognizing the presence of some form of functional derangement, and meeting it by dietetic and hygienic treatment. Too often some defect of vision is not early enough recognized, and is the means of causing irritation either of the brain or general nervous system. A large proportion of these deaths is found to occur in cities.

DISEASES OF THE HEART AND CIRCULATION.

Of these the average deaths, for the five years ending June 30th, 1883, was 1,115. The record for 1883–4 was 1,324; for 1884–5, 1,503, and for 1885–6, 1,506. The city record for the last year was 838. The country districts receive a little more than their share of death-record from heart disease and adult brain disease, because so
many thus invalided retire from business to country homes. There seems to be a gradual increase of diseases of the heart and circulation, in part probably owing to the more exciting and exacting demands of business life. Young men are more rapidly forced into active business relations, the speculative type even invades the domain of systematic trades and industries, and anxiety or excitement cannot but affect our inner circulating medium and the organs that convey it. Some statistics seem to indicate that the use of salicylic acid, and the quicker dealing with rheumatism, make it less a cause of heart impairment than formerly. Experience is showing that valvular disease, and some other forms of heart or artery disturbance, are not so fatal or so limiting of life as formerly, if only there is adjustment to the impairment and a more quiet or uniform life.

URINARY DISEASES.

The average of deaths from these for the five years ending June 30th, 1883, was 640; for 1883–4 the record was 892; for 1884–5, 939, and for 1885–6, 926. On our original sheets we distinguish between those that affect the kidneys, and those that affect the bladder only. Most of the cases are those of organic disease of the kidneys, so often associated in mortality records under the name of Bright’s disease.

No organ of the body is more intricate or more perfect as an alembic or laboratory, and none is less likely to be organically changed if there is conformity to the laws of our being. But between alcohol, Cayenne pepper, catsup and various stimulating and irritating juices and condiments, it is not wonderful that the minute capillary vessels of these two organs should become inflamed and change of structure take place. We believe that proper dietetic management would prevent or postpone many deaths occurring from this disease.

ADULT BRAIN AND SPINAL DISEASES.

The average of deaths from this cause, for the five years ending June 30th, 1883, was 1,449. The record for 1883–4 was 1,664; for 1884–5, 1,895; for 1885–6, 1,932. This uniform increase is significant, and has some of the same causes alluded to under the heading of heart disease. These are cases not to be met by the methods used

SPECIAL DISEASES.

for communicable diseases, but have their remedy in a practice of such laws as relate to the care of the animal economy. They are a sad comment on that wastage of human life, which occurs either from overstrain or from a lowering of the general vitality of the people.

DIGESTIVE AND INTESTINAL DISEASES.

The average of deaths from these, of persons over twenty years of age, for the five years ending June 30th, 1883, was 957. The record for 1883–4 was 1,075; for 1884–5, 1,140, and for 1885–6, 1,213. Of these last, 111 are marked “Dysentery.” The increase is about in proportion with the increase of population. Not only the theory of digestion, but the management of diseases of the digestive organs, is better understood than formerly. If this record be added to that of diarrhoeal diseases, it is evident how many deaths occur from improper foods and disorders of digestion. The remedy is largely in self-restraint, and in a knowledge of the laws of health among the people.

CANCER.

The average of deaths from it for the five years ending June 30th, 1883, was 423. The record for 1883–4 was 484; for 1884–5, 498, and for 1885–6, 546. The English tables also notice a somewhat surprising increase of this affection. As the diagnosis of cancer from other forms of tumor or sore is not always easy, no doubt the number is somewhat exaggerated. But, nevertheless, the increase should attract the attention of all investigators of disease.

ACUTE RHEUMATISM.

The average of deaths from this cause for five years ending June 30th, 1883, was 64. The record of 1883–4, was 62; of 1884–5, 36; of 1885–6, 68. While not a fatal disease, it often leaves some impairment of vital organs. It also shows a relation to states of weather and to seasons. It is to be studied especially in climatological relations, as also in its relation to the digestive apparatus.
PUERPERAL DISEASES.

No diseases need more careful watch than those which imperil the life of mothers. All the more because the element of contagiousness is so prominent and so many a life is sacrificed to want of caution. The average of deaths for the five years ending June 30th, 1883, was 237. The record for 1883-4, was 221; for 1884-5, 268, and for 1885-6, 257. The number last year not directly connected with childbirth was 41.

ACCIDENTS.

Last year we added a special note as to the number and variety of avoidable accidents. The number for 1884-5, was 837; for 1885-6, 997. While this column as printed includes all accidents and suicides, it shows a loss of life from this cause requiring the most careful attention. We have already in the report of the Secretary drawn attention to the drowning record. The prevention of railroad and drowning accidents and of accidents from machinery needs to be carefully studied with a view to prevention.

While the record of the year, taken as a whole, is more satisfactory than that of some years, the student of vital statistics cannot but see the general uniformity of indications as to the mortality from various diseases, and appreciate more than ever before how many deaths occur which might be postponed or from causes which might be removed.

TABLE OF CONTENTS.

TENTH REPORT OF THE BOARD OF HEALTH. PAGES.

I. Report of the Secretary of the Board......................... 5-79
II. The Physical Laws of Pipes and Fixtures and their Contents; by Prof. C. F. Brackett, LL.D........... 81-89
III. Illuminating-Gas; its History and its Dangers; by Prof. Joseph H. Raymond, M.D......................... 91-138
IV. The Relation Between Drinking-Water and Typhoid Fever; by D. Benjamin, M.D......................... 133-138
V. Roads and Streets as Sanitary Measures, and How to Construct Them; by C. Phillips Bassett, C.E.E.M......................... 139-156
VI. The Hygiene of Occupations; by E. M. Hunt, M.D., J. W. Stickler, M.D., Wm. K. Newton, M.D., J. P. Davis, M.D......................... 157-200
VII. Report on Asylums, Jails, Prisons, Penitentiaries and Alms-Houses; by Ezra M. Hunt, Secretary... 201-205
VIII. Abstracts from the Papers and Discussions of the New Jersey Sanitary Association for 1886; by D. C. English, M.D......................... 207-237
IX. Summary of Reports from Local Boards of Health; by the Secretary... 239-311
X. Report of the Council of Analysts to the State Board of Health; by Prof. A. R. Leeds, Ph.D........... 313-316
XI. Report of the Milk Inspector; by Wm. K. Newton, M.D......................... 317-325
XII. Laws, Circulars, etc.. 327-347
XIII. Medical Registry.. 349-355

(459)
TABLE OF CONTENTS.

REPORT OF THE BUREAU OF VITAL STATISTICS.

I. Introduction to the Reports, and facts as to Mortality, Marriages and Births; by the Medical Superintendent of Vital Statistics ... 359-371
II. The Relation of the Physician and the Sanitarian to Heredity, with Statistics as to it; by Laban Dennis, M.D ... 373-392
III. Infant Mortality, by Medical Superintendent of Vital Statistics .. 393-401
IV. Climatological Observations and Records ... 403-411
V. Number of Marriages, Births and Deaths, by Townships ... 413-420
VI. Returns of Deaths from all Causes and all Ages, by Counties, Cities and Townships .. 422-444
VII. Synopsis of Vital Returns and Comments on Special Diseases, by the Medical Superintendent of Vital Statistics ... 445

INDEX.

PAGE.

Accident .. 458
Adult Brain and Spinal Diseases 456
Air and Air Tests ... 315, 397
Air Gas .. 111
Alms-houses ... 201, 318
Animal and Human Health .. 62
Animal Diseases ... 62
Artesian Wells .. 289
Artificial Deaths ... 447
Association, Sanitary .. 59
Asylum, Morristown .. 21
Bathing Accidents ... 370-413
Births, Returns of ... 215, 232
Boards of Health ... 34
Brain and Nervous Diseases of Children 455
Breath and Diseases ... 358
Bureau of Vital Statistics ... 115
Burners, Gas ... 457
Cancer ... 313
Carbonic Acid (carbon dioxide) .. 420
Causes of Death ... 23
Cemeteries ... 67, 267
Cesspools and Privy Vaults ... 201, 318
Charities and Correction ... 449
Cholera, Asiatic .. 327
Circulars ... 403
Climatology ... 33, 37, 231
Communicable Diseases, Control of 447
Comparisons of City and Rural Deaths 454
Consumption ... 34, 37
Contagious Diseases, Notification, etc............................. (461)
INDEX.

Croup.. 37, 252, 341, 452
Dangers of Gas..................................... 125
Deaths.. 413, 420
Death-rates .. 360
Depressing Weather.............................. 404
Diarrhoeal Diseases.............................. 453
Digestive and Intestinal Diseases............. 457
Diphtheria.. 37, 252, 341, 452
Disposal of Sewage.............................. 9, 47, 49, 55, 65, 71, 211, 289
Drainage.. 248, 271, 302
Drinking-Water and Typhoid Fever............ 133, 229
Dust and Disease................................. 158
Dysentery.. 249, 272, 274, 309, 407
Earth Closets....................................... 67, 265
Education, Sanitary.............................. 45, 217
Erysipelas.. 453
Fever, Remittent................................... 449
Fever, Scarlet...................................... 63, 305, 451
Fever, Typhoid..................................... 37, 133, 136, 227, 285, 341, 449
Filtration of Water................................ 19, 57
Financial View of Health....................... 6, 361
Flax, Jute and Silk Industries................ 189
Foods, Preserved.................................. 227, 235, 397
Gas, Illuminating.................................. 91, 235
Glass Workers...................................... 163
Hardness of Water................................ 51
Hatters.. 158, 166
Health Boards..................................... 215, 232
Health Inspectors................................. 45, 58, 214, 297, 306
Healthy Persons in Harmful Occupations..... 8
Heart and Circulation Diseases............... 455
Heredity.. 373
House-pipes and Their Laws................... 89, 213
Houses, Tenement.................................. 52
Hydrophobia.. 26
Hygiene of Occupations......................... 157
Illuminating-Gas.................................. 91
Infant Mortality.................................... 393
Inspectors and Inspection...................... 45, 58, 214, 297, 306

INDEX.

Jails.. 201, 318
Kerosene.. 235
Laws.. 327, 346
Lead Water-pipes................................ 17
Library... 59
Long Branch Milk Sickness...................... 62
Lung Diseases, Acute............................. 455
Malaria... 273, 274
Manufacture of Coal-Gas....................... 102
Marriage, and Laws as to it................... 364, 413
Measles... 451
Metal Workers, Diseases of.................... 159
Meters, Gas.. 106
Microphytes, or Micro-organisms in Water.... 21
Milk.. 60, 235, 317, 319, 396
Mortality as a Test of Healthfulness......... 363
Mortality, Infant.................................. 393, 398
Nervous Diseases.................................. 455
Notification of Contagious Diseases......... 34
Occupations, Hygiene of......................... 157
Pail and Tub System.............................. 67
Pavement, and Construction of Streets....... 150
Physicians... 341, 349
Physicians and Heredity........................ 373
Pipes and Fixtures, Laws of................... 81, 213
Plumbers and Plumbing......................... 75, 225
Pollution of Water............................... 15, 52
Potters.. 158
Pottersville Ice-cream Sickness............... 60
Precipitation of Sewage......................... 13
Preventable Diseases............................ 33, 37, 231
Prisons... 201, 318
Puerperal Diseases............................... 458
Questions in Sanitation........................ 46
Rags, Importation of............................ 22
Rain Gauge... 48
Records of Meteorology......................... 406
Registry, Medical............................... 349
Resorts, Summer.................................. 30
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatism, Acute</td>
<td>457</td>
</tr>
<tr>
<td>River Pollution</td>
<td>15</td>
</tr>
<tr>
<td>Roads</td>
<td>53, 139</td>
</tr>
<tr>
<td>Rubber Shoes and Boots</td>
<td>195</td>
</tr>
<tr>
<td>Sanitary Works</td>
<td>362</td>
</tr>
<tr>
<td>Scarlet Fever</td>
<td>305, 451</td>
</tr>
<tr>
<td>Scarlet Fever, Bovine</td>
<td>63</td>
</tr>
<tr>
<td>Schools, Sanitary Oversight of</td>
<td>43, 219, 313, 332, 454</td>
</tr>
<tr>
<td>Sewage Disposal</td>
<td>9, 47, 49, 55, 65, 71, 269, 289</td>
</tr>
<tr>
<td>Silk, Flax and Jute Industries</td>
<td>189</td>
</tr>
<tr>
<td>Small-pox</td>
<td>29, 275, 450</td>
</tr>
<tr>
<td>Soils as Filters</td>
<td>11</td>
</tr>
<tr>
<td>Streets, Sanitary</td>
<td>143</td>
</tr>
<tr>
<td>Sub-Irrigation</td>
<td>67</td>
</tr>
<tr>
<td>Summer Resorts</td>
<td>30</td>
</tr>
<tr>
<td>Survey, Sanitary</td>
<td>238</td>
</tr>
<tr>
<td>Swine-plague</td>
<td>253, 299</td>
</tr>
<tr>
<td>Synopsis of Vital Returns</td>
<td>445</td>
</tr>
<tr>
<td>Tenement-Houses</td>
<td>52</td>
</tr>
<tr>
<td>Tonsilitis</td>
<td>37, 252, 341</td>
</tr>
<tr>
<td>Total Vital Returns</td>
<td>420</td>
</tr>
<tr>
<td>Town and Village Disposal of Sewage</td>
<td>65</td>
</tr>
<tr>
<td>Traps</td>
<td>77, 207</td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>37, 133, 136, 229, 285, 341, 449</td>
</tr>
<tr>
<td>Urinary Diseases</td>
<td>456</td>
</tr>
<tr>
<td>Vaccination</td>
<td>29</td>
</tr>
<tr>
<td>Ventilation</td>
<td>49, 54</td>
</tr>
<tr>
<td>Vital Statistics</td>
<td>359</td>
</tr>
<tr>
<td>Water-Gas</td>
<td>104</td>
</tr>
<tr>
<td>Water-Supplies</td>
<td>15, 54, 55, 229, 244, 248, 289, 297, 310</td>
</tr>
<tr>
<td>Weather</td>
<td>404</td>
</tr>
<tr>
<td>Whooping-Cough</td>
<td>452</td>
</tr>
</tbody>
</table>